Observation of the decay $D^0 \to K^- \pi^+ e^+ e^-$

FCNC and GIM mechanism

PHYSICAL REVIEW D

VOLUME 2. NUMBER 7

I OCTOBER 1970

Weak Interactions with Lepton-Hadron Symmetry*

S. L. GLASHOW, J. ILLOPOULOS, AND L. MAIANI[†] Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02139 (Received 5 March 1970)

We propose a model of weak interactions in which the currents are constructed out of four basic quark fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory, that the leading divergences do not violate any strong-interaction symmetry and the next to the leading divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry between leptons and quarks. The extension of our model to a complete Yang-Milis theory is discussed.

Shan: What caused the FCNC?

- flavour changing neutral current process observed experimentally
- GIM mechanism proposed to explain rare K decays.
- FCNC is forbidden at tree level.
- sensitive to new physics
 - predicted the exsistence of charmed quark.

breaking news recently

Figure 2 | Weighted distribution of the dimuon invariant mass, $m_{\mu^+\mu^-}$, for all categories. Superimposed on the data points in black are the combined fit (solid blue line) and its components: the B_5^0 (yellow shaded area) and B^0 (lightblue shaded area) signal components; the combinatorial background (dashdotted green line); the sum of the semi-leptonic backgrounds (dotted salmon

line); and the peaking backgrounds (dashed violet line). The horizontal bar on each histogram point denotes the size of the binning, while the vertical bar denotes the 68% confidence interval. See main text for details on the weighting procedure.

nature International weekly jou

Home	News & Comment	Research	Careers & Jobs	Current Issue	Archive	Audio & Video	For /
Archive	Volume 522	Issue 7554	Letters Arti	cle			

NATURE | LETTER OPEN

< 🖶

日本語要約

Observation of the rare $B_s^0 \rightarrow \mu^+ \mu^-$ decay from the combined analysis of CMS and LHCb data

CMS Collaboration & LHCb Collaboration

Affiliations | Contributions | Corresponding authors

Nature 522, 68–72 (04 June 2015) | doi:10.1038/nature14474 Received 12 November 2014 | Accepted 31 March 2015 | Published online 13 May 2015

Figure 1 | Feynman diagrams related to the $B_s^0 \rightarrow \mu^+ \mu^-$ decay. a, π^+ meson decay through the charged-current process; b, B^+ meson decay through the charged-current process; c, a B_s^0 decay through the direct flavour changing neutral current process, which is forbidden in the SM, as indicated by a large red

'X'; **d**, **e**, higher-order flavour changing neutral current processes for the $B_s^0 \rightarrow \mu^+ \mu^-$ decay allowed in the SM; and **f** and **g**, examples of processes for the same decay in theories extending the SM, where new particles, denoted X^0 and X^+ , can alter the decay rate.

FCNC at charm sector

- Xin: What are the "Short-distance contribution" and "long-distance contribution" to the D0->Kpi ee process?
- **Ryuta**: Is that is there any special reason to pick up the channel, D0->K-pi+e+e-, comapred with the other channels ?

FIG. 1. Short distance contributions to FCNC decays in D mesons due to (a) box and (b) penguin diagrams.

Figure 1.3: The long distance penguin contribution to the meson decays with the flavour structure $c\bar{q} \rightarrow u\bar{q}\gamma$. The intermediate quark pairs $d\bar{d}$ and $s\bar{s}$ hadronize to the neutral vector mesons ρ^0 , ω , ϕ and finally convert to a photon.

- mumu channel has been observed by LHCb, need to be confirmed
- good environment to calibrate long-distance calculations.
- sensitive to new physics
- very important reference channel for measurements of c->ull processes, such as D0->pipi II. easier to obtain precise branching fractions.
 4

Question from Xin

Xin:Some BSM predict the BR as $O(10^{-5})$, at the end of this paper, the measurement is 4.0 x 10^-6. Does this veto those BSM predictions?

 \succ those BSM predictions not been ruled out.

> uncertainties in theoretical predictions are large

inclusive calculation could not been ruled out by a special channel. For new physics, we do not know which kind of process is more sensitive.

Suyu

Why do they treat the uncertainty in branching fraction of normalization channel as a dependent(?) one, not a part of systematic uncertainty?

- as mentioned above, this channel is an very important reference channel in the FCNC channels
- for the external uncertainty, the results could be updated conviniently when having new results of D0->K pi pi pi.

$m(e^+e^-)$	$N_{ m sig}$	$\hat{\epsilon}_{ m sig}$	$\mathcal{B}(D^0 \to K^- \pi^+ e^+ e^-)$
(GeV/c^2)	(cands.)	(%)	$(\times 10^{-6})$
0.100 - 0.200	175 ± 14	5.0 ± 0.2	_
>0.100	308 ± 18	5.9 ± 0.2	-
>0.200	134 ± 13	8.0 ± 0.2	$8.8 \pm 0.8 \pm 0.4 \pm 0.2$
0.200 - 0.675 or >0.875	59 ± 9	6.4 ± 0.2	$4.8 \pm 0.7 \pm 0.3 \pm 0.1$
0.675 - 0.875	68 ± 9	8.9 ± 0.2	$4.0 \pm 0.5 \pm 0.2 \pm 0.1$

yuhang

what's the sPlot technique.

➤ they already shown the reference of sPlot in the paper, where details could be found.

designed to treat data samples populated by several sources of events.

 \succ able to unfold the contributions of the different sources to the distribution of a data sample in a given variable.

shan

In this sentence"This asymmetric function is used in order to describe

bremsstrahlung emission of photons by the electrons."

• Can you explain "bremsstrahlung emission "?

- ▶ 韧致辐射
- electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus.
- The moving particle loses kinetic energy, which is converted into radiation (i.e., a photon), thus satisfying the law of conservation of energy.

amit

- Question-1: What kind of likelihood function they used in this paper to fit the result?
- Question-2: What is the meaning of systematic uncertainty which is associated with luminosity ratio 0.8%. They have mentioned the overall systematic uncertainty which 5.3% and uncertainty in normalized mode to be 3.6%. could you please explain to me?

1.1% per kaon [27]. A systematic uncertainty of 0.8% is associated with the knowledge of the luminosity ratio, $\mathcal{L}_{\rm norm}/\mathcal{L}_{\rm sig}$ [25].

The overall systematic uncertainty in the yields is 5.3% for the signal and 3.6% for the normalization mode. As

The $D^0 \to K^- \pi^+ e^+ e^-$ branching fraction is determined relative to that of the normalization decay channel $D^0 \to K^- \pi^+ \pi^+ \pi^-$ using $\frac{\mathcal{B}(D^0 \to K^- \pi^+ e^+ e^-)}{\mathcal{B}(D^0 \to K^- \pi^+ \pi^+ \pi^-)} = \frac{\hat{\epsilon}_{\text{norm}}}{N_{\text{norm}}} \frac{\mathcal{L}_{\text{norm}}}{\mathcal{L}_{\text{sig}}} \sum_{i}^{N_{\text{sig}}} \frac{1}{\epsilon_{\text{sig}}^i},$ (1)

where $\mathcal{B}(D^0 \to K^- \pi^+ \pi^+ \pi^-)$ is the branching fraction of the normalization mode [35], and N_{norm} and $\hat{\epsilon}_{\text{norm}}$ are the $D^0 \to K^- \pi^+ \pi^+ \pi^-$ fitted yield and the reconstruction efficiency calculated from simulated $D^0 \to K^- \pi^+ \pi^+ \pi^-$

personal comment and discussion

- could we conclude that we observed long distance contribution?
- probably not.
 - D0->Kpi omega 3 * 10^-2
 - omega->ee 7.4* 10^-5
 - then, D0-> K pi omega, omega-> ee 2* 10 ^-6
 - which is a Cabbibo-favored process.
- what do you think the highlight of this paper is? what makes them have the confidence to submit to PRL?
- this paper started with :
- The decay $D^0 \to K^-\pi^+e^+e^-$ [1] is an example of a flavor-changing neutral-current (FCNC) process, which is expected to be very rare in the standard model (SM) as it cannot occur at tree level and is suppressed by the Glashow-Iliopoulos-Maiani (GIM) mechanism at loop

do you agree that this decay is a FCNC process?

- I personally doubt it.

thanks

10