Question of Parity Conservation in Weak Interactions

Xin Shi

2018.09.14

Journal Club 77

Parity

A parity transformation (parity inversion) is the flip in the sign of one spatial coordinate.

$$\mathbf{P}:egin{pmatrix}x\y\z\end{pmatrix}\mapstoegin{pmatrix}-x\-y\-z\end{pmatrix}$$

• Parity is conserved in electromagnetism, strong interactions and gravity, but not in weak interactions.

P-symmetry: A clock built like its mirrored image will behave like the mirrored image of the original clock P-asymmetry: A clock built like its mirrored image will *not* behave like the mirrored image of the original clock.

Parity

★The parity operator performs spatial inversion through the origin:

$$\begin{split} \psi'(\vec{x},t) &= \hat{P}\psi(\vec{x},t) = \psi(-\vec{x},t) \\ \text{•applying} \quad \hat{P}\text{:wice:} \quad \hat{P}\hat{P}\psi(\vec{x},t) = \hat{P}\psi(-\vec{x},t) = \psi(\vec{x},t) \\ \text{so} \quad \hat{P}\hat{P} = I \quad \hat{P}^{-1} = \hat{P} \end{split}$$

•To preserve the normalisation of the wave-function

$$\begin{array}{c} \langle \psi | \psi \rangle = \langle \psi' | \psi' \rangle = \langle \psi | \hat{P}^{\dagger} \hat{P} | \psi \rangle \\ \hat{P}^{\dagger} \hat{P} = I & \hat{P} & \text{Unitary} \\ \bullet \text{ But since } \hat{P} \hat{P} = I & \hat{P} = \hat{P}^{\dagger} & \hat{P} & \text{Hermitian} \end{array}$$

which implies Parity is an observable quantity. If the interaction Hamiltonian commutes with \hat{P} , parity is an observable conserved quantity

• If $\psi(\vec{x},t)$ is an eigenfunction of the parity operator with eigenvalue P $\hat{P}\psi(\vec{x},t) = P\psi(\vec{x},t)$ $\hat{P}\hat{P}\psi(\vec{x},t) = P\hat{P}\psi(\vec{x},t) = P^2\psi(\vec{x},t)$ since $\hat{P}\hat{P} = I$ $P^2 = 1$ Parity has eigenvalues $P = \pm 1$

 \star QED and QCD are invariant under parity

★ Experimentally observe that Weak Interactions do not conserve parity

Intrinsic Parities of fundamental particles:

Spin-1 Bosons

•From Gauge Field Theory can show that the gauge bosons have

$$P = -1$$

$$P_{\gamma} = P_g = P_{W^+} = P_{W^-} = P_Z = -1$$

Spin-1/2 Fermions

•From the Dirac equation showed (handout 2):

Spin ¹/₂ particles have opposite parity to spin ¹/₂ anti-particles

•Conventional choice: spin $\frac{1}{2}$ particles have P = +1

$$P_{e^-} = P_{\mu^-} = P_{\tau^-} = P_{\nu} = P_q = +1$$

and anti-particles have opposite parity, i.e.

$$P_{e^+} = P_{\mu^+} = P_{\tau^+} = P_{\overline{\nu}} = P_{\overline{q}} = -1$$

★ For Dirac spinors it was shown (handout 2) that the parity operator is:

$$\hat{P} = \gamma^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Michaelmas 2011

Parity Conservation in QED and QCD

Consider the QED process e⁻q → e⁻q
The Feynman rules for QED give:

$$-iM = [\overline{u}_e(p_3)ie\gamma^{\mu}u_e(p_1)]\frac{-ig_{\mu\nu}}{q^2}[\overline{u}_q(p_4)ie\gamma^{\nu}u_q(p_2)]$$

•Which can be expressed in terms of the electron and quark 4-vector currents: 2^2

$$M = -\frac{e^2}{q^2}g_{\mu\nu}j_e^{\mu}j_q^{\nu} = -\frac{e^2}{q^2}j_e.j_q$$
$$j_e = \overline{u}_e(p_3)\gamma^{\mu}u_e(p_1) \text{ and } j_q = \overline{u}_q(p_4)\gamma^{\mu}u_q(p_2)$$

with

*Consider the what happen to the matrix element under the parity transformation

• Spinors transform as

$$\begin{bmatrix} u \stackrel{\hat{P}}{\to} \hat{P}u = \gamma^0 u \end{bmatrix}$$

Adjoint spinors transform as

$$\overline{u} = u^{\dagger} \gamma^{0} \xrightarrow{\hat{P}} (\hat{P}u)^{\dagger} \gamma^{0} = u^{\dagger} \gamma^{0\dagger} \gamma^{0} = u^{\dagger} \gamma^{0} \gamma^{0} = \overline{u} \gamma^{0}$$
$$\left[\overline{u} \xrightarrow{\hat{P}} \overline{u} \gamma^{0} \right]$$

• Hence
$$j_e = \overline{u}_e(p_3) \gamma^{\mu} u_e(p_1) \xrightarrow{\hat{P}} \overline{u}_e(p_3) \gamma^0 \gamma^{\mu} \gamma^0 u_e(p_1)$$

 p_3

*p*₄

 p_2

Question from Yuhang:

- How to get the conclusion that the present large asymmetry is possible only if both conservation of parity and invariance under charge conjugation are violated from attachments.
- > If P-conservation were true in beta decay, electrons would have no preferred direction of decay relative to the nuclear spin.

Question from Shan:

- In fact, the equality of the life times of a charged particle and its charge conjugate against decay through a weak interaction (to the lowest order of the strength of the weak interaction) can be shown to follow from the invariance under proper lorentz transformations.
- Why use Lorentz transformation can obtain that the life times of charged particles through a weak interaction are the same?
- > the Lorentz transformations (or transformation) are linear coordinate transformations between two coordinate frames that move at constant velocity relative to each other.

Question from Ryuta

 Around the first page, the "theta-tau puzzle (= kaon) " is referred as an inspiration of the discussion. We now know that the weak interaction is cause by (in this case) W-boson, which can only couple to the left-hand particle, s-quark, for the case of the Kaon decay. Then, I'm little bit confusing but, how we can make consistent view from the two issues ?

1. weak interaction does not conserve the parity, sometimes conserve (3pions), sometimes not (2pions)

2. W-boson only couples to the left-hand particles

Question from Suyu:

- Is polar angle counter set to some random or certain angle?
- > One in the equatorial plane and one near the polar position. From the paper, it looks in the horizontal posibion.

Question from Kai:

- In the paper written by Garwin, Lederman, weinrich, why the negative muon shows an asymmetry that different from positive muon?
- The Fierz-Pauli theory for spin 3/2 particles predicts a g value of 2/3

Question from Amit:

 In the paper written by Ambler, Hayward Hoppes and Hudson, What does it mean by weaker asymmetry which they have mentioned while calculating the peak-to-valley ratio?