"Study of gain homogeneity and radiation effects of Low Gain Avalanche Pad Detectors"

JC79 (paper), 09/28/2018

TCT: Transient Current Tchnique

= illuminating the sensor (from front/back/side direction) with Laser etc.
to induce the electron/hole pairs inside at desired position

Laser (in this paper):

"Red" ($\lambda{=}660$ nm) from the front/back side which can absorbed (created pairs) immediately

"Infra-red" ($\lambda{=}1064~\text{nm}$) from the front side which can penetrate the whole sensor

Fig. TCT measurement setup

"Electron" Injection

"Hole" Injection

the same order

Measurements for unirradiated LGAD devices I.

IV & CV measurement

Measurements for unirradiated LGAD devices II.

normalized gain

Collected charge VS bias voltage

" The mean charge for voltages > 500V was used as the reference to calculate the gain of the LGAD "

Measurements for irradiated LGAD devices I.

(a) Proton irradiation, hole injection.

Measurements for irradiated LGAD devices II.

(b) Neutron irradiation, hole injection.

Measurements for irradiated LGAD devices III.

Gain VS fluence

 $10^{14} \sim 10^{15}$ seems to be a boundary

Uniformity of the gain

-- the 2D plots are obtained from the electron injection

It is explained in the figure caption that the metal grid on the backside for the electrical contact is visible . . .

Markers ("X") show the 4 points for the additional voltage scan (next slide)

Position dependence

Waveform after irradiation

They conclude that the form (under 200V $<\!\!-\!\!>$ above 300V) is similar to that of "D" position

Summary I.

 \cdot LGAD detectors with a gain of \sim 4 have been investigated before and after irradiation.

• The focus was towards the intrinsic charge multiplication and gain of the devices, based on TCT.

• Up to 10^{15} n_{eq}, the gain is comparable to that of PIN.

• Acceptor removal effect works faster for charged hadrons than neutron.

Summary II.

- TSC (Thermally Stimulated Current) shows possible explanation of the relationship between the inhomogeneous region and the leakage current.
- Type inversion might have contribution too.

Fig. 10. Thermally stimulated current (TSC) measurement on unirradiated LGAD devices with high and low leakage current. The high leakage current device shows a peak in the TSC signal at 40 K.

"It remains necessary to investigate this behavior on irradiated LGAD structures of future lots".

Questions

Question from Xin :

Could you elaborate the two proposed reasons for the gain degradation in LGAD devices?

"Measurements on LGAD samples with leakage current in the range of few μ A showed that the voltage needed to deplete the multiplication layer after irradiation decreases. This effect was associated with an acceptor removal due to the removal of boron in the multiplication layer [6,11] which would also explain the observed gain degradation. An alternative explanation for the gain degradation in LGAD devices is based on the simulation of LGAD structures which showed that the effect could be caused by charge trapping in the device [17]."

Ba th no in

Basically, the acceptor removal makes the material (Silicon) pure than before, it can explain the decreasing of the current. But it might not so simple, since there would be "defect" in the silicon which can increase the current.

How does it behave with irradiation?

The excess current changes with irradiation – gets smaller with irradiation, but doesn't disappear - the reduction of total leakage with fluence

If it remains substantial it can effect the space charge and this should point to what it is

- hole current
- electron current

But they also discussed that the temperature dependence of the leakage current is not big , , ,

which means the main source of the leakage current might not be that of bulk.

Conclusions

- It seems that the excess current is dominated by hole current
 - $\hfill\square$ the origin is not known, but it is not localized at a hot spot
 - □ It is not dependent on temperature (not a generation current?)
- Excess current in LGAD influences the space charge after irradiation
 - It can lead to SCSI which requires higher voltage to deplete the multiplication layer.
 - Space charge is heavily influenced by temperature. which can be explained by almost independent hole concentration (constant current) and strongly dependent de-trapping times
- The behavior is independent on irradiation particle type

the E-filed change due to the irradiation is simulated with TCAD !

Fig. 11. The electric field for different irradiation fluence (a) for V_{bias} =500 V around the multiplication region, and (b) inside the sensor volume for N_p =9.75 × 10¹⁶ cm⁻³ (moderate gain case) at T=253 K.

Question from Yuhang :

My question: The reason about comparing the results for neutron and proton irradiation but also with previous measurements in the fluence range below 10^15 neq/cm^2 showed that the effective acceptor removal works faster for charged hadrons.

This is one of hot topic for the study of radiation damage, and one of summary of this paper.

Effects of protons and neutrons irradiation to the gain layer and bulk of 50-micron thick FBK LGAD sensors doped with Boron, Boron Low diffusion, Gallium, Carbonated Boron and Carbonated Gallium

M. Ferrero¹, R. Arcidiacono⁴, M. Boscardin⁵, N. Cartiglia¹, G.F. Dalla Betta³, F.Ficorella⁵, M. Mandurrino¹, L. Pancheri³, G. Paternoster⁵, I. Sanna², F. Siviero², V. Sola^{1,2}, A. Staiano¹, M.Tornago²

¹INFN, Torino, Italy
 ²Università di Torino, Torino, Italy
 ³University of Trento and INFN, Department of Industrial Engineering, Trento, Italy
 ⁴Università del Piemonte Orientale, Novara, Italy
 ⁵Fondazione Bruno Kessler (FBK), Trento, Italy

From a slide on the RD50 workshop this year

Evolution of active acceptor density with fluence

$$N_A(\phi) = g_{eff}\phi + N_A(\phi=0)e^{-c\phi}$$

Ø = fluence

 N_A = active acceptor density at fluence Φ

 g_{eff} = empirical constant (~0,02 cm⁻¹) \rightarrow to compare with the measurements on irradiated PiN diode

c = coefficient of the acceptor removal \rightarrow Dependent upon the irradiation type, the acceptor type and the initial acceptor density

For More detail on the acceptor removal model see the N. Cartiglia talk on thin workshop

Considering the **real value of proton fluence** (p/cm^2) the c_p coefficients (proton) and the c_n ones (neutron) are **compatible** with each other.

If the **NIEL factor** was applied the c_p coefficients are almost **twice** c_p

Question from Suyu :

We can easily see the influence on the gain of the devices, but what can we learn for intrinsic charge multiplication?

I agree. From the histograms in the paper, the decreasing of the gain by the multiply layer & the other part is not clearly separated.

Two Photon Absorption TCT

Although we can get information from "hole/electron" injections,,, the Two Photon Absorption TCT might give us further clue (or not)

From my past special topic on March 2018.

RD50 TCT – Transient Current Technique

Concept: TPA TCT

- TCT: Pulsed laser induced generation of charge carriers in the detector
 - Study of: electric field in sensor, charge collection efficiency, homogeneity,...
 - Benchmarking of simulation tools, measure physics parameters from mobility to impact ionization

• New TCT technology: TPA-TCT – Two Photon Absorption TCT

Question from Amit :

Question: What is the guard ring structure in the design and why due to the absence of a guard ring structure in the design it is impossible to distinguish surface from bulk current contribution?

Question from Kai :

My question is: In Fig2., what caused the left side of the signal increased more sharply compared with the righthand side? it seems more clear on plot (b), and there's a small tail on the right side.

Maybe, the total amplitude (by the multiply layer) as well as the enhanced E-field.

(b) Hole injection.