XYZ States at BESIII

Shan Gu

1

Outline

► BESIII data sets for XYZ study Charmoniumlike states • The X(3872)— $J^{pc}=1^{++}$ $e^+e^- \rightarrow \gamma X(3872), X(3872) \rightarrow \pi^+ \pi^- I/\psi$ • The Y states — J^{PC}=1⁻⁻ $Y \rightarrow \pi^+ \pi^- J/\psi, Y \rightarrow \pi^+ \pi^- \psi$ (3686), $Y \rightarrow \pi^+ \pi^- h_c$ • The Z_c states — I=1 & decays into $c\bar{c}$ J^P for Zc(3900), $Z_c \rightarrow \rho \eta_c$ **≻**Summary

BESIII data sets for XYZ study

The X state

$e^+e^- ightarrow \gamma X(3872), X(3872) ightarrow \pi^+ \pi^- J/\psi$

- The X(3872) signal is clearly observed: significance 6.3σ.
 M(X(3872)) = 3871.9±0.7±0.2 MeV [PDG: 3871.68±0.17 MeV]
- Existence of radiative transition process $Y(4260) \rightarrow \gamma X(3872).$
- Assuming that measured transition is from Y(4260) and $\mathcal{B}[X(3872) \rightarrow \pi^+ \pi^- J/\psi] = 5\%$

$$\frac{\mathcal{B}[Y(4260) \to \gamma X(3872)]}{\mathcal{B}(Y(4260) \to \pi^+ \pi^- J/\psi)} = 0.1$$

The Y states

Precise Measurement of $e^+e^- \rightarrow \pi^+ \pi^- J/\psi$ Cross Section

 Simultaneous fit to the cross section from XYZ data(left) and R-scan data (right)
 Fit I = |BW1+BW2*e^{iφ2}+BW3* e^{iφ3} |² or Fit II =|exp+BW2* e^{iφ2} +BW3* e^{iφ3} |² Resonance I: M = (4222.0±3.1±1.4) MeV, Γ = (44.1±4.3±2.0) MeV,

Lower and narrower than previous Y(4260) PDG value

Resonance II: M = (4320.0±10.4±7) MeV, Γ = (101.4±25±10) MeV,

a little bit lower than Y(4360) PDG value

> The significance of the second resonance is 7.6σ

> The first observation of $Y(4360) \rightarrow \pi^+ \pi^- J/\psi$?

$e^+e^- \rightarrow \pi^+ \pi^- \psi(3686)$

Reconstructed modes

PRD 96, 032004 (2017)

- Mode I: $\psi(3686) \rightarrow \pi^+ \pi^- J/\psi$, $J/\psi \rightarrow l^+ l^- (l = e/\mu)$.
- Mode II: $\psi(3686) \rightarrow neutrals + J/\psi$, $neutrals = (\pi^0 \pi^0, \pi^0, \eta \text{ and } \gamma \gamma), J/\psi \rightarrow l^+ l^- (l = e/\mu)$.

 $e^+e^- \rightarrow \pi^+ \pi^- \psi(3686)$

PRD 96, 032004 (2017)

Parameters	Solution I	Solution II			
$M(Y4220) (MeV/c^2)$	4209.5	5 ± 7.4			
$\Gamma(Y(4220))$ (MeV)	80.1 =	80.1 ± 24.6			
$\mathcal{B}\Gamma^{e^+e^-}(Y(4220))$ (eV)	0.8 ± 0.7	0.4 ± 0.3			
$M(Y4390)$ (MeV/ c^2)	4383.8	4383.8 ± 4.2			
$\Gamma(Y(4390))$ (MeV)	84.2 ± 12.5				
$\mathcal{B}\Gamma^{e^+e^-}(Y(4390))$ (eV)	3.6 ± 1.5	2.7 ± 1.0			
ϕ_1 (rad)	3.3 ± 1.0	2.8 ± 0.4			
ϕ_2 (rad)	0.8 ± 0.9	4.7 ± 0.1			

- Fix parameters of the Y(4660) to Belle results.
- The Y(4220) is necessary(significance = 5.8σ)

$$e^+e^-
ightarrow \pi^+ \pi^-h_c$$

PRL118, 092002 (2017)

The cross sections are of the same order of magnitude as those of the $e^+e^- \rightarrow \pi^+ \pi^ J/\psi(\psi(3686))$, but follow a different line shape.

• Fitted with coherent sum of two Breit-Wigner like structure

M₁=4218.4^{+5.5}_{-4.5}±0.9 MeV/c², Γ₁= 66.0^{+12.3}_{-8.3}±0.4 MeV → Y(4220) M₂=4391.5^{+6.3}_{-6.8}±1.0 MeV/c², Γ₂=139.5^{+16.2}_{-20.6}±0.6 MeV → Y(4390)

The Z_c states

Determination of J^p **of Zc(3900)**

PRL 119, 072001 (2017)

Based on a PWA of the $e^+e^- \rightarrow \pi^+$ $\pi^- J/\psi$ at $\sqrt{S} = 4.23$, 4.26GeV.

Assume Zc to have J^p=1⁺, parameterized with Flatte formula.

 Pole Mass=(3881.2±4.2±52.7)MeV, Pole width=(51.8±4.6±36.0)MeV

Determination of J^p of Zc(3900)

The significance of the $J^P=1+$ hypothesis over the alternative J^P possibilities to be larger than 7σ .

Polar angle distribution of Zc \pm in the process $e^+e^- \rightarrow Zc^+\pi^-$ + c.c. Helicity angle distribution of J/ ψ in the $Zc^{\pm} \rightarrow \pi^{\pm}$ J/ ψ .

Search for $Z_c \rightarrow \rho \eta_c$

A.Esposito, A.L.Guerrieri, A.Pilloni, Phys. Lett. B 746, 194 (2015)

- The ratios of $Z_c^{(\prime)} \to \rho \eta_c$ to $Z_c^{(\prime)} \to \pi J/\psi(\pi h_c)$ may distinguish the tetra-quark and molecule models.
- The green band and yellow band show the 1σ and 2σ confidence range of the corresponding theoretical model.

Evidence for $Z_c \rightarrow \rho \eta_c$

preliminary

- $e^+e^- \rightarrow \pi^+ \pi^- \pi^0 \eta_c$
- $\eta_c \rightarrow 9$ hadronic decays

Decay mode	BR		
$\eta_c \rightarrow p\overline{p}$	~0.13%		
$\eta_c \to 2(K^+K^-)$	~0.15%		
$\eta_c \to \pi^+ \pi^- K^+ K^-$	~1.50%		
$\eta_c \to K^+ K^- \pi^0$	~1.20%		
$\eta_{ m c} ightarrow oldsymbol{p} \overline{oldsymbol{p}} \pi^0$	~0.18%		
$\eta_{c} \rightarrow K_{S}K\pi$	~1.80%		
$\eta_c \rightarrow \pi^+ \pi^- \eta$	~1.60%		
$\eta_c \to K^+ K^- \eta$	~0.57%		
$\eta_c \to \pi^+ \pi^- \pi^0 \pi^0$	~2.40%		

- Strong evidence for $e^+e^- \rightarrow \pi Z_c, Z_c \rightarrow \rho \eta_c$ at $\sqrt{s} = 4.23 \text{GeV}$ Significance: 4.3σ .
- $e^+e^- \rightarrow \pi Z'_c, Z'_c \rightarrow \rho \eta_c$ not seen.

 $e^+e^- \rightarrow \pi Z_c, Z_c \rightarrow \rho \eta_c$ at $\sqrt{s} = 4.23 \text{GeV}$

Evidence for $Z_c \rightarrow \rho \eta_c$

preliminary

	$\sqrt{s} = 4.23 \mathrm{GeV}$	$\sqrt{s} = 4.26 \mathrm{GeV}$	$\sqrt{s} = 4.36 \mathrm{GeV}$	Tetra-quarks-I	Tetra-quarks-II	Molecule
$R_{Z_c(3900)}$	2.1 ± 0.8	< 6.4		230^{+330}_{-140}	$0.27\substack{+0.40 \\ -0.17}$	$0.046\substack{+0.025\\-0.017}$
$R_{Z_c(4020)}$	< 1.9	< 1.2	< 1.0	6.6	$+56.8 \\ -5.8$	$0.010\substack{+0.006\\-0.004}$

A.Esposito et al, Phys. Lett. B 746, 194 (2015)

Also calculations predict very different values:

$$R_z = 10^{-3} \sim 10^2 !$$

arXiv:1806.05651 arXiv:1512.01938 PRD 91, 034032 (2015) PRD 90, 054006 (2014) EPJC 73, 2561 (2013) 16

➢BESIII collaboration has performed a detailed study of the XYZ at 3.8-4.6 GeV

- Observation of $Y(4260) \rightarrow \gamma X(3872)$.
- Measurement of Born cross-section for different channels reveal complex structures and new Y states
- J^P=1⁺ for Zc(3900), evidence for $Z_c \rightarrow \rho \eta_c$
- BESIII will take more data and continue the study.

