
TOF sub-detector

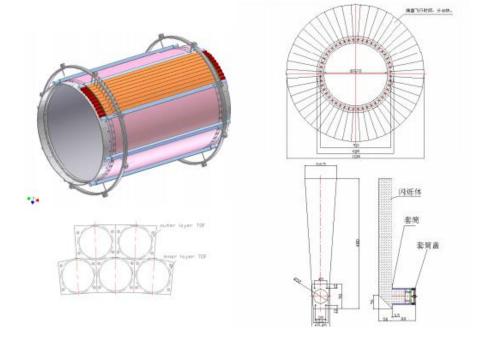
Suyu XIAO from IHEP 20181221

TOF -- Time Of Flight sub-detector

• A Time-Of-Flight system(TOF) for particle identification; time resolution is about 80 ps in the barrel, and about 110 ps in the endcaps, corresponding to a K/π separation of more than 2σ level up to about 1.0 GeV

TOF -- Time Of Flight sub-detector

• TOF is to measure the flight time of charged particles for particle identification (PID) by comparing the measured time against the predicted time.

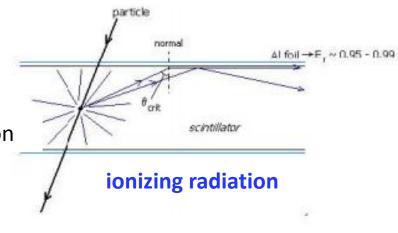

Table 1	Analysis	of time	resolution	for PID
---------	----------	---------	------------	---------

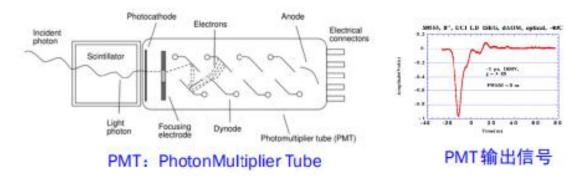
Item	Barrel time reso.	Endcap time reso.
Intrinsic time reso. of one TOF layer for 1 GeV muon	80~90 ps	80 ps
Uncertainty from bunch length	15 mm,35 ps	15 mm,35 ps
Uncertainty from bunch time	~20 ps	~20 ps
Uncertainty from Z position	5 mm,25 ps	10 mm,50 ps
Uncertainty from electronics	25 ps	25 ps
Resolution of expected time of flight	30ps	30ps
Time walk	10ps	10ps
Total time reso, one layer of TOF for 1 GeV muon	100~110ps	110~120ps
Total time reso, double layer of TOF for 1 GeV muon	90ps	

TOF -- Structure

• 2.4m long plastic scintillators arranged as a cylinder with two layers for the barrel, 5cm thick each, and 96 fan-shaped, 5 cm thick, plastic scintillators for two endcaps

plastic scintillator bar directly coupled with FM-PMT

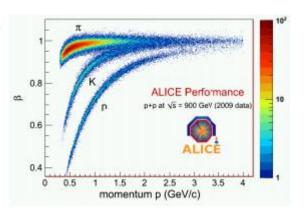



MRPC:

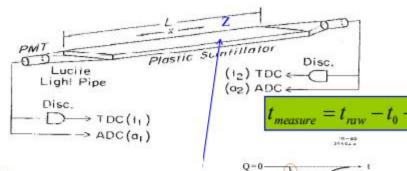
Multi-air gap resistive plate chamber

TOF -- Structure

- Scintillator & PMT
- 光电倍增管输出信号,测量量:
 - Time Digital Conversion
 - 脉冲幅度(QTC) 正比于产生的光 子数目


TOF -- PID

PID can be done by measuring time


$$\beta = \frac{v}{c} = \frac{L}{c \cdot t}$$

$$\beta = \frac{v}{c} = \frac{L}{c \cdot t} \qquad \beta = \frac{p \cdot c}{E} = \frac{1}{\sqrt{\left(\frac{m \cdot c}{p}\right)^2 + 1}}$$

$$m = \frac{p}{c} \sqrt{\left(\frac{c \cdot t}{L}\right)^2 - 1}$$

TOF -- Calibration

经验公式:

$$t_{cor} = P_0 + \frac{P_1 + P_2 \times z}{\sqrt{Q}} + \frac{P_3}{Q} + P_4 \times z + P_5 \times z^2 + P_6 \times z^3$$

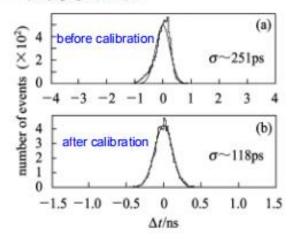
Po-P6: 刻度常数

• 刻度常数

- Po: 时间延迟
- P₁-P₃: 时幅修正
- P4-P6: 等效速度的修正项
- 从MDC重建的径迹计算预期时间(与测量时间无关) $t_{predicted} = L/\beta c$, L: flight path, $\beta = p/\sqrt{p^2 + m^2}$
- 最小化χ²方法

$$\chi^2$$
 (counter, readout unit) = $\sum_{\text{events}} (t_{\text{measure}} - t_{\text{predicted}})^2$

• P₀-P₆的获得: ∂χ²

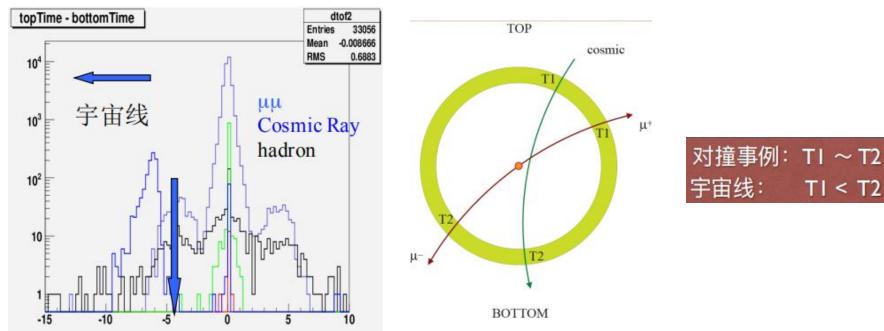

$$\frac{\partial \chi^2}{\partial P_i} = 0, i = 0, 1 \dots 6$$

- TOF测量量: 每个PMT: 一个TDC和一个QTC
 - 原始时间TDC → $t_{measure}$, 刻度依赖于脉冲幅度,击中位置 → 一套刻度常数
 - 径迹拟合+径迹外推 → 预期时间t_{predict}
 - -最小化∑($t_{measure} t_{predict}$)²得到单个PMT 时间刻度常数


TOF -- Resolution

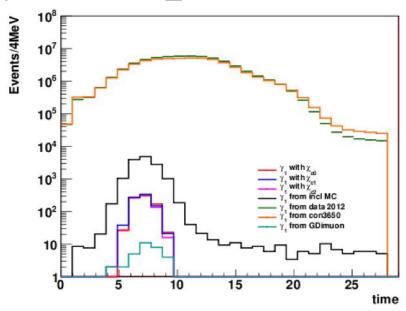
· 分辨的定义: 测量时间—预期时间

• 刻度结果



$$\sigma^{2} = \frac{1}{n} \sum_{\text{events}} (t_{\text{measure}} - t_{\text{truth}})^{2}$$
$$\sigma = \sqrt{\sigma^{2}}$$

TOF -- Veto bkg


veto cosmic rays:

[0, 14] to veto bkg from other events.

TOF -- Neutral case?

In my previous chi_c -> invisibke case:

I used [4, 10] to veto bkg.

In BESIII Collaboration in Wuhan I was told that (-10, 10) is recommend and generally accepted(in case someone will do neutral invisible analysis).