Cross section and Higgs mass measurement with Higgsstrahlung at the CEPC

Tan Yuhang 2018-09-21

Suyu: What's Higgsstrahlung?

energy physics community. It will operate at a center-of-mass energy of 240–250 GeV. The CEPC will accumulate an integrated luminosity of 5 ab⁻¹ over ten years of operation, producing one million Higgs bosons via the Higgsstrahlung and vector boson fusion processes. This sample allows a percent or even sub-percent level determination of the Higgs boson couplings. With GEANT4-based full simulation and a dedicated fast simulation tool, we have evaluated the

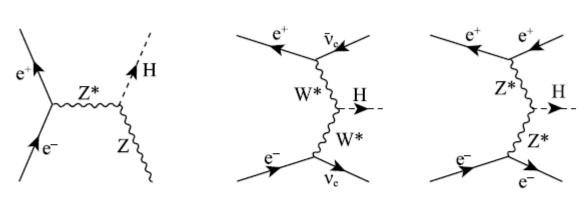
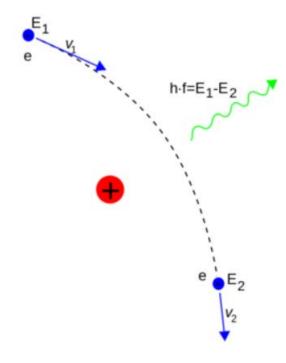



Fig. 1. Feynman diagrams of the Higgs production mechanisms at the CEPC: the Higgsstrahlung, WW fusion, and ZZ fusion processes.

The name higgsstrahlung likes bremsstrahlung.

- Ryuta: The cuts to suppress the 2-fermion backgrounds are described as following:
 - 1) Pt(mumu)>20Gev
 - 2) Difference of azimuthal angles of the two muons < 175 degree what are the meaning/effect of those (especially the second one)?

2 fermion backgrounds

Process	$\int L$	Final states	X-sections (fb)	Comments
$e^+e^- o e^+e^-$	$5\mathrm{ab}^{-1}$	e^+e^-	24992.21	
$e^+e^- o \mu^+\mu^-$	$5\mathrm{ab}^{-1}$	$\mu^+\mu^-$	4991.91	
$e^+e^- o au^+ au^-$	$5\mathrm{ab}^{-1}$	$ au^+ au^-$	4432.18	
$e^+e^- o uar u$	$5\mathrm{ab}^{-1}$	$ uar{ u}$	53598.37	
$e^+e^- o u_ear u_e$	$5\mathrm{ab}^{-1}$	$ u_ear{ u}_e$	45390.79	
$e^+e^- o u_\muar u_\mu$	$5\mathrm{ab}^{-1}$	$ u_{\mu}ar{ u_{\mu}}$	4416.30	
$e^+e^- o u_ auar u_ au$	$5\mathrm{ab}^{-1}$	$ u_{ au}ar{ u_{ au}}$	4410.26	
$e^+e^- o qar q$	$5\mathrm{ab}^{-1}$	$qar{q}$	50105.35	
$e^+e^- o uar u$	$5\mathrm{ab}^{-1}$	u ar u	10110.43	

the detector. By tagging the muon pairs from the associated Z boson decays, the Higgsstrahlung events can be reconstructed with the recoil mass method:

$$M_{\text{recoil}} = \sqrt{s + M_{\mu^{+}\mu^{-}}^{2} - 2(E_{\mu^{+}} + E_{\mu^{-}})\sqrt{s}},$$

where E_{μ^+} and E_{μ^-} are the energies of the two muons, $M_{\mu^+\mu^-}$ is their invariant mass, and s is the square of center-of-mass energy. Therefore, the ZH $(Z \to \mu^+\mu^-)$

Table 2. Efficiencies of signal and background in the model-independent analysis

	$Z(\mu^+\mu^-)H$	ZZ	WW	${\rm ZZ}$ or ${\rm WW}$	single Z	Z(2f)	$\gamma\gamma$
total generated	35247	5347053	44180832	17801222	7809747	418595861	161925000
$N_{\mu^+} \geqslant 1, N_{\mu^-} \geqslant 1$	95.7%	11.95%	0.65%	3.92%	9.75%	1.64%	17.31%
$120~{\rm GeV} < M_{\rm recoil} < 150~{\rm GeV}$	93.2%	1.71%	0.23%	0.70%	1.93%	0.17%	3.06%
$80~{\rm GeV} < M_{\mu^+\mu^-} < 100~{\rm GeV}$	85.5%	0.68%	0.06%	0.22%	0.22%	0.10%	0.11%
$p_{{ m T}\mu^{+}\mu^{-}} > 20 { m GeV}$	80.2%	0.57%	0.06%	0.17%	0.16%	0.02%	0.04%
$\Delta \phi < 175^{\circ}$	77.8%	0.51%	0.05%	0.17%	0.15%	0.01%	0.04%
BDT cut	63.0%	0.25%	0.01%	0.05%	0.06%	0.01%	0.01%
fit window	62.8%	0.25%	0.01%	0.05%	0.05%	0.01%	0.01%

Xin: Why is impossible for the LHC to access the Higgs total width or absolute couplings in a model-independent way?

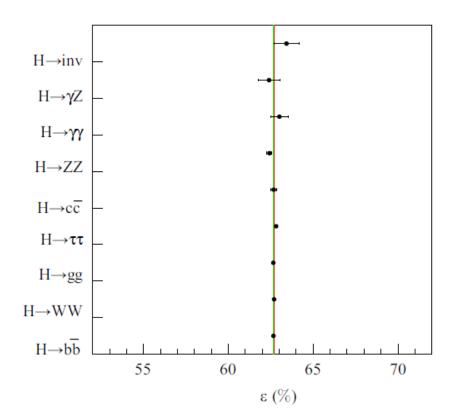
the LHC [9]. Moreover, as the Higgs boson can only be reconstructed through its decay products at the LHC, it is impossible for the LHC to access the Higgs total width or absolute couplings in a model-independent way.

1

Higgs working group report

Conveners: Sally Dawson (BNL), Andrei Gritsan (Johns Hopkins), Heather Logan (Carleton), Jianming Qian (Michigan), Chris Tully (Princeton), Rick Van Kooten (Indiana)

• HL-LHC can measure the Higgs boson mass with a precision of ~50 MeV per experiment, however has limited sensitivity to the Higgs decay total width, even with SM assumptions. Higgs factories such as ILC, CLIC, or TLEP will achieve a mass precision of about 35 MeV and measure the Higgs decay width up to ~1.3% in precision. Through a line-shape scan, a muon collider can measure the total width directly to 4.3% and the mass to sub-MeV precision.


1.3.2 Models that modify the triple-Higgs coupling

Beyond the Standard Model, the triple-Higgs coupling is in general modified. The size of the modification is highly model-dependent, potentially providing model-discriminating power. Estimates of the self-coupling

• Precision tests of Higgs boson couplings to one-percent will require complementary precision programs. Proposed Higgs factories such as linear or circular e^+e^- colliders and potentially a muon collider will be able to achieve these precisions for many of the absolute couplings, and in a model-independent way.

Amit: In figure-5, If there is no significant bias to any specific Higgs Decay mode is observed, then why they have selected this channel "H-->invisible " for the determination of Higgstrahlung cross section σ_{ZH} and the Higgs mass m_H measurement at the CEPC?

The uniformity of event selection efficiency with different Higgs decay modes is studied. A SM ZH ($Z \rightarrow \mu^+\mu^-$) sample corresponding to 500 ab has been simulated, where the Higgs boson decays inclusively. Figure 5 shows the efficiencies and no significant bias to any specific Higgs decay mode is observed. In order to evaluate

the $\sigma_{\rm ZH}$ is less than 10^{-3} , which is much smaller than the statistical uncertainty 0.97%. It is therefore reasonable to conclude the recoil mass method gives a model-independent measurement.

3.4 Measurement of the Higgs boson invisible decay mode

The invisible decay mode of the Higgs boson is a well motivated signature of physics beyond the SM [20–23]. At the CEPC, the invisible Higgs boson decay branching ratio can be determined precisely using the recoil mass method. Assuming the Higgs boson has a SM

Thank you