Direct measurement of the branching fractions for K^0 and K^{*0} production in J/ψ decays

ZHAO Ming Gang¹ RONG Gang¹ CHEN Jiang Chuan¹ ZHANG Da Hua¹ MA Hai Long¹

Charged Particle Identification

Combined particle confidence level

$$CL(i) = \int_{\chi^2}^{\infty} P(z,n) dz$$

Where i = 1, 2, 3, 4 and 5 denotes e, μ , π , K and proton.

$$\chi^2 = \Delta_{TOF}^2 + \Delta_{dE/dx}^2 + \Delta_{measure}^2$$

$$\Delta_{TOF} = \frac{T_{measure} - T_{expect}}{\sigma_{TOF}}$$

$$\Delta_{dE/dx} = \frac{dE/dx_{measure} - dE/dx_{expect}}{\sigma_{dE/dx}}$$

$$\Delta_{BSC} = \frac{E_{measure} - E_{expect}}{\sigma_E}$$

$$P(z,n) = \frac{1}{2^{\frac{n}{2}}} (z)^{\frac{n}{2}-1} e^{-\frac{n}{2}}$$

For π , CL(π)>0.1%, and CL(π)>CL(K)

For K, CL(K)>0.1%, and CL(K)>CL(
$$\pi$$
)

For proton,
$$\frac{CL(p)}{CL(\pi)+CL(K)+CL(p)} > 0.6$$

Data Sample (April 2001, February 2003, December 2003, January 2004)

Integrated luminosity

Processes used : $e^+e^- \rightarrow e^+e^-$, $e^+e^- \rightarrow J/\psi \rightarrow e^+e^-$

$$\mathcal{L} = \frac{N_{e^+e^-}^{obs}}{\sigma_{Bhabha} \cdot \varepsilon_{Bhabha} + \sigma_{J/\psi \to e^+e^-} \cdot \varepsilon_{J/\psi \to e^+e^-} + \sigma_{int} \cdot \varepsilon_{int}}$$

$$\sigma_{had}^{obs} = \sigma_{J/\psi \to e^+e^-} \cdot \varepsilon_{J/\psi \to e^+e^-} + \sigma_{int} \cdot \varepsilon_{int} = \frac{N_{had}^{obs}}{\epsilon_{had} \cdot \mathcal{L}}$$

Integrated luminosity and the observed inclusive hadronic cross section correlate with each other

Through a χ^2 fit to the observed inclusive cross sections with J/ ψ resonance parameters fixed at PDG value, we can get \mathcal{L} at each energy point.

Divide all energy points into 16 energy regions (Add \mathcal{L} with their weights)

Selection of the candidate events

At least two charged tracks should be well reconstructed θ of each charged track must satisfy $|cos\theta| < 0.80$

For $e^+e^- \rightarrow K_S^0 + X$, each track from the region $|cos\theta| < 0.80$ (for ours, 0.93) $\sqrt{V_x^2 + V_y^2} < 8.0 cm(for ours, 12.0 cm)$ $|V_{\tau}| < 22.0 cm(for ours, 20.0 cm)$ The best fit value of laboratory decay distance in xy plane for K_S^0 is required to be displaced at least 0.004mm from the interaction point. For $e^+e^- \rightarrow K^{*0} + X$, each track from the region $|cos\theta| < 0.80$ $\sqrt{V_x^2 + V_y^2} < 2.0cm$ $|V_{z}| < 20.0 cm$

Fit to the mass spectra

Reconstruct K_S^0 and K^{*0} by examining the invariant mass spectra of $\pi^+\pi^-$ and $K^-\pi^+$

For K_S^0 (the same as ours)

If more than one combination satisfies the above selection criteria in one event, only those with the longest decay are retained.

For *K**0

If more than one combination satisfies the above selection criteria in one event, only those with largest $CL_{K} * CL_{\pi}$ is retained.

Table 3: Fitted results of mass and the resolution of the selected inclusive $\pi^+\pi^-$, $K^-\pi^+$, and K^+K^- events for M.C. samples.

	K_S^0	$K^{\star 0}$
Fitted Mass [MeV]	497.13 ± 0.03	889.85 ± 0.14
Resolution [MeV]	6.54 ± 0.29	7.91 ± 0.38

function for the signals and a third order polynomial for the background, we obtain the fitted masses and the resolutions, which are shown in Table 3.

Figure 1: The distributions for the inclusive (a) $\pi^+\pi^-,$ and (b) $K^-\pi^+$ events for M.C. samples.

The invariant masses are denoted by $M_{\pi^+\pi^-}$ and $M_{K^-\pi^+}$, respectively, and the invariant mass spectra is fitted with a Breit-Wigner convoluted with a Gaussian resolution function for the signals and a polynomial function for background. (After this work, we compared the dynamic variables of MC and DATA as well as detection efficiency)

Background contamination

Possible contaminations : $e^+e^- \rightarrow (\gamma)e^+e^-$, $e^+e^- \rightarrow (\gamma)\mu^+\mu^-$

Accounted for the luminosity, we can estimate the number of background events at each point are less than 10⁻³, thus we can neglect the influence of these background processes.

Monte Carlo simulation

At this step, the article estimates the detection efficiencies of these two processes.(γ^* samples, we use 3.050, 3.060, 3.080, 3.090, 3.095, 3.099, 3.1015, 3.112, 3.120 to estimate other points)

Figure 4: The distributions of the energy dependent efficiencies for (a) $e^+e^- \rightarrow K_S^0 + X$ and (b) $e^+e^- \rightarrow K^{\star 0} + X$ processes, where the lines indicate the expected efficiencies.

Table 5: The energy dependent detection efficiencies for $e^+e^- \rightarrow K_S^0 + X$ and $e^+e^- \rightarrow K^{*0} + X$ processes, including the branching fractions for the decays $K^0 \rightarrow K_S^0 \rightarrow \pi^+\pi^-$ and $K^{*0} \rightarrow K^+\pi^-$, where the errors are statistical error.

$E_{\rm cm} [{\rm GeV}]$	$\epsilon_{K^0_S}$	$\epsilon_{K^{\star 0}}$
3.0814	0.0931 ± 0.0025	0.1473 ± 0.0016
3.0878	0.0949 ± 0.0026	0.1486 ± 0.0016
3.0919	0.0920 ± 0.0024	0.1456 ± 0.0016
3.0934	0.0967 ± 0.0022	0.1472 ± 0.0016
3.0949	0.0959 ± 0.0020	0.1437 ± 0.0016
3.0961	0.1008 ± 0.0018	0.1490 ± 0.0016
3.0967	0.0933 ± 0.0016	0.1477 ± 0.0016
3.0973	0.0976 ± 0.0015	0.1478 ± 0.0016
3.0977	0.0962 ± 0.0014	0.1477 ± 0.0016
3.0985	0.0954 ± 0.0014	0.1497 ± 0.0016
3.0995	0.0987 ± 0.0014	0.1559 ± 0.0016
3.1005	0.0965 ± 0.0014	0.1490 ± 0.0016
3.1027	0.0965 ± 0.0014	0.1502 ± 0.0016
3.1061	0.0935 ± 0.0016	0.1471 ± 0.0016
3.1105	0.0979 ± 0.0018	0.1485 ± 0.0016
3.1171	0.0951 ± 0.0019	0.1520 ± 0.0016

Observed cross section

The observed cross section for $e^+e^- \rightarrow M + X$

$$\sigma_{e^+e^- \to M+X}^{obs} = \frac{N_{e^+e^- \to M+X}^{obs}}{\mathcal{L} * \mathcal{E}_{e^+e^- \to M+X}}$$

Table 6: The observed cross sections for $e^+e^- \to K^0 + X$ and $e^+e^- \to K^{*0} + X$ processes at each combined energy point, where the errors are the combined energy dependent and data sets dependent errors.

$E_{\rm cm}~[{\rm GeV}]$	$\sigma_{K^0}^{\text{obs}}$ [nb]	$\sigma_{K^{\star 0}}^{\mathrm{obs}}$ [nb]
3.0814	4.11 ± 1.16	2.00 ± 1.63
3.0878	1.73 ± 1.31	0.33 ± 2.01
3.0919	4.93 ± 1.23	2.57 ± 1.57
3.0934	6.11 ± 1.70	0.15 ± 1.75
3.0949	59.78 ± 4.77	26.93 ± 5.47
3.0961	423.43 ± 21.45	153.33 ± 18.68
3.0967	735.33 ± 45.30	294.02 ± 30.74
3.0973	654.74 ± 35.06	236.50 ± 28.78
3.0977	510.01 ± 32.44	214.63 ± 23.22
3.0985	246.36 ± 15.15	89.50 ± 12.55
3.0995	84.76 ± 6.81	21.18 ± 6.77
3.1005	59.36 ± 6.94	16.88 ± 7.89
3.1027	33.95 ± 4.54	9.28 ± 5.28
3.1061	17.54 ± 3.23	15.84 ± 4.84
3.1105	19.54 ± 3.16	7.02 ± 3.70
3.1171	13.36 ± 2.45	4.66 ± 3.45

Measurement of $\mathcal{B}(J/\psi \rightarrow \mathcal{M} + X)$

Expected cross section

The expected observed cross section $\sigma_{e^+e^- \to M+X}^{expect}(E_{cm})$ consists pf two components: $\sigma_{e^+e^- \to M+X}^{expect}(E_{cm}) = \sigma_{J/\psi \to M+X}^{expect}(E_{cm}) + \sigma_{e^+e^- \to M+X}^{continuum}(E_{cm})$

$$\begin{split} \sigma_{J/\psi \to \mathcal{M}+X}^{\text{expect}}(s) &= \int_{0}^{\infty} ds' G(s,s') \cdot \int_{0}^{1} dx \cdot \sigma_{J/\psi \to \mathcal{M}+X}^{\text{B}}(s'(1-x)) F(x,s') & \beta = \frac{2\alpha}{\pi} (\ln \frac{s}{m_{e}^{2}} - 1), \\ G(s,s') &= \frac{1}{\sqrt{2\pi\xi}} e^{-\frac{(\sqrt{s} - \sqrt{s})^{2}}{2\xi^{2}}} \sigma_{J/\psi \to \mathcal{M}+X}^{\text{expect}}(s) &= \int_{0}^{\infty} ds' G(s,s') \cdot \sigma_{J/\psi \to \mathcal{M}+X}^{\text{sim}}(s') & (1+\delta) = 1 + \frac{\alpha}{\pi} (\frac{\pi^{2}}{3} - \frac{1}{2}) + \frac{3}{4} \beta - \frac{\beta^{2}}{24} (\frac{1}{3} \ln \frac{s}{m_{e}^{2}} + 2\pi^{2} - \frac{37}{4}) \\ \sigma_{J/\psi \to \mathcal{M}+X}^{\text{sim}}(s) &= \frac{12\pi \Gamma^{\text{ee}} \Gamma^{\text{tot}} \cdot \mathcal{B}(J/\psi \to \mathcal{M}+X)}{s^{2}}, \\ [(1+\delta)A^{\beta-2}\phi(\cos\theta,\beta) + (-\beta + \frac{3}{4}\beta^{2})A^{\beta-1}\phi(\cos\theta,\beta + 1)], & cos\theta = \frac{1}{4} (\frac{M^{2}}{s} - 1), \\ \phi(\cos\theta,\beta) &= \frac{\pi\beta \sin(\theta(1-\beta))}{\sin\theta \sin(\pi\beta)}. \end{split}$$

 $\sigma_{e^+e^- \to \mathcal{M}+X}^{\text{continuum}}(s) = h(s) \cdot \sigma_{\mu^+\mu^-}^{\text{B}}(s)$ where $\sigma_{\mu^+\mu^-}^{\text{B}}(s)$ is the Born cross section for $e^+e^- \to \mu^+\mu^-$ and h(s) is a factor determined from fit.

Measurement of $\mathcal{B}(J/\psi \rightarrow \mathcal{M} + X)$

Fitted branching fractions

 $E_{\rm cm}[GeV]$

 $E_{\rm cm}[GeV]$

Figure 7: The observed cross sections for $e^+e^- \to K^{\star 0} + X$ versus the nominal c.m. energies.

Table 7: The measured values of the mass of J/ψ resonance, the energy spread of BEPC machine, the branching fraction for $J/\psi \to \mathcal{M} + X$ and h, which are obtained by fitting the observed cross sections discribed in text.

	χ^2/NDF	M	Δ^{BEPC}	h	$\mathcal{B}(J/\psi \rightarrow M + X)$
		[MeV]	[MeV]		[%]
$\mathcal{M} = K^0$	15.9/NDF	3096.90 ± 0.03	0.90 ± 0.02	0.18 ± 0.03	20.4 ± 0.5
$\mathcal{M} = K^{\star 0}$	10.3/NDF	3096.90 ± 0.06	0.88 ± 0.05	0.06 ± 0.04	7.7 ± 0.4

Systematic Error Analysis

To estimate the systematic uncertainties of the branching fractions, the article shifts the measured observed cross section, Γ^{tot} and Γ^{ee} of J/ ψ resonance by +/-1 σ to measure the change of the branching fractions.

Table 9: The sources of the systematic uncertainties in the measured branching fractions.

Sources	Uncertanty [%] in	Uncertanty [%] in	
	$\mathcal{B}(J/\psi \to K^0 + X)$	$\mathcal{B}(J/\psi \to K^{\star 0} + X)$	
$\Delta \sigma^{\rm obs}$	5.5	3.8	
$\Gamma^{ee}_{J/\psi}$	3.6	3.6	
$\Gamma_{J/\psi}^{\rm tot}$	0.0	0.0	_3
Total	6.6	5.3	

Table 10: The branching fractions obtained from the fit, where the first errors are from the fit and the second are the systematic.

		${\mathcal B}\ [\%]$	
	$J/\psi \to K^0 + X$	$20.4\pm0.5\pm1.3$	
	$J/\psi \to K^{\star 0} + X$	$7.7\pm0.4\pm0.4$	
err_{sys}^{tanle1}	$e^{0} = err_{sys}^{table}$	$^{29}(\% \rightarrow dec$	imal) * B
Eg: 0.066 [.]	*20.4≈1.3		

Calculating the relative changes of +σ and -1σ,
respectively and choosing the greater one as the systematic error.