

Fully hadronic Higgs decay H \rightarrow WW* \rightarrow qqqq in Higgsstrahlung HZ, Z \rightarrow qq at 250 GeV CepC

Mila Pandurović

Vinca Institute of Nuclear Sciences University of Belgrade, Serbia

04 June 2018

Introduction

- **Signal signature:** 6 central jets in the final state
- Goal of the analysis:
 - Calculate the statistical potential for the determination of the specific Higgs couplings
 - Verify the analysis strategy

Signal reconstruction

- k_T exclusive, particle flow with Arbor v3.1
- Jet formation: force events into 6 jets, do the jet pairing to form H (W and W*), Z
 - Fit in boson the peak vicinity (±10 GeV, ±5 GeV,) for the Higgs and the Z boson for several jet openings R=0.8, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
 - The best result is obtained for R=1.5 (maximal allowed for the Fast Jet 2.4.2 max ~ as used in ilcsoft_150612)
 - m_{Higgs} and m_Z show slight underestimation \Rightarrow R of the jets slightly smaller (discussed later)

Reconstruction of the Higgs, Z and W bosons

- In order to reconstruct the Higgs, Z, W boson reconstruction the event is forced into six jets
- Obtained jets are grouped into three pairs to form the W, W* and Z bosons
- □ From WW* pair the Higgs boson
- The combination which minimizes the χ^2 is chosen :

$$\chi^{2} = \frac{\left(m_{_{ij}} - m_{_{W}}\right)^{2}}{\sigma^{^{2}}_{_{W}}} + \frac{\left(m_{_{kl}} - m_{_{Z}}\right)^{2}}{\sigma^{^{2}}_{_{Z}}} + \frac{\left(m_{_{ijmn}} - m_{_{H}}\right)^{2}}{\sigma^{^{2}}_{_{H}}}$$

• For the corresponding σ are the WA width was taken $\sigma^2_{H,W,Z}$

Reconstructed boson invariant masses for signal

Signal and background samples

sample	$\sigma[fb]$	#evts/5ab ⁻¹	#evts used
$qqh ightarrow q\overline{q}WW^* ightarrow q\overline{q}q\overline{q}q\overline{q}$	16,12	80600	74342
other Higgs decays non $qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	127,27	636350	644354
2 <i>f</i>	49561,30	247806500	100000
4f_ww_cuxx	3395,48	16977400	1220200
4f_ww_ccbs	5,74	28700	99400
4f_ww_ccds	165,57	827850	1343474
4f_ww_uubd	0.05	250	99800
4f_ww_uusd	165,94	829700	691057
4f_Mix_udud	1570,40	7852000	2782962
4f_Mix_cscs	1568,94	7844700	2375076
4 <i>f_zz_</i> utut	83,09	415450	400000
4f_zz_dtdt	226,20	1131000	332600
4f_zz_uu_notd	95,65	478250	477400
4 <i>f_zz_cc_nots</i>	96,04	480200	337400

Many thanks to Bingyang and Gang !!! for the production of 4f hadronic large x-sec bck at the end of last year – enabled analysis continuation in 2018

Investigated variables

- Invariant masses: m_{Higgs} m_Z m_W m_{w*}
- Number of particle flow objects NPFO
- Visible energy E_{vis}
- □ The highest transverse momentum of the jet in the event –highestPtJet
- Transverse momentum of the Higgs boson PtOfHiggsJets
- Event shape variables: thrust, oblatness, sphericity, aplanarity
- **Det transitions:** $y_{12} y_{23} y_{34} y_{45} y_{56} y_{67}$
- Force event into 2 jet: btag1, btag2, btag1*btag2
- □ ctag1, ctag2
- Force event into 6 jet: btag_i, ctag_i
- Angle between jets that comprise W boson: ThetaWqq,
- Angle between jets that comprise Z boson: ThetaZqq
- Angle between W and W* that comprise the Higgs boson : ThetaHiggsW1W2
- Arithmetic variable Energy*Theta of the W, Higgs and Z boson

Invariant masses

The event shape variables

M. Pandurović

Jet transitions

The distribution of the energy of the W real boson versus the angle between jets that comprise it

New variable construction energy theta of the Z boson

The distribution of the energy of the W real boson versus the angle between jets that comprise it

Arithmetic Variables Energy*Theta for W boson

■ 8000< EnergyThetaW <14000. 10000< EnergyThetaZ <17000. NPFO>80.

sample	$\sigma[fb]$	#evts/5ab ⁻¹	ε _{pres} [%]	evts after preselection
$qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	16,12	80600	70.0	56380
other Higgs decays non $qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	127,27	636350	43.0	273975
2 <i>f</i>	49561,30	247806500	0.8	1990414
4 <i>f_ww_cuxx</i>	3395,48	16977400	16.7	2838452
4f_ww_ccbs	5,74	28700	22.5	6453
4f_ww_ccds	165,57	827850	18.3	151787
4f_ww_uubd	0.05	250	19.8	50
4f_ww_uusd	165,94	829700	15.3	127241
4f_ww_zz_udud	1570,40	7852000	16.0	1255551
4f_ww_zz_cscs	1568,94	7844700	17.9	1406147
4 <i>f_zz_</i> utut	83,09	415450	22.0	91366
4f_zz_dtdt	226,20	1131000	27.5	311025
4f_zz_uu_notd	95,65	478250	23.7	113345
4f_zz_cc_nots	96,04	480200	27.8	133496

- The training of BDTG was performed on ten background samples excluding:
 - 2f backgrounds cut down at the preselection level 0.8% preserved sensitive observables low training statistics (50000 training evts after preselection 0.8%=400evts left)
 - 4f_WW_ccbs and 4f_WW_uubd low cross-section lower training statistics
- The variables set was optimized to a set with the minimal stable relative statistical error (41 variables investigated – 18 final variables)
 - Invariant masses: m_{Higgs} m_Z m_W
 - Number of particle flow objects NPFO
 - Highest PtJet, transverse momentum of jets that comprise Higgs boson -PtOfHiggsJets
 - Event shape variables: thrust, oblatness, aplanarity
 - **Det transitions:** $y_{12} y_{34} y_{45} y_{56} y_{67}$
 - □ Force event into 2 jet: btag1, btag2
 - ctag1
 - Arithmetic variable Energy*Theta of the Z boson

• After preselection and multivariate analysis ~99% of the background is reduced

sample	$\sigma[fb]$	#evts /5ab ⁻¹	evts after preselection	ε _{tmva} [%]	[€] total [%]	evts after final selection
$qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	16,12	80600	56380	41.3	28.85	23257
other Higgs decays non qqh $\rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	127,27	636350	273975	14.1	6.1	38629
2 <i>f</i>	49561,30	247806500	1990414	0.25	0.002	4976
4 <i>f_ww_cuxx</i>	3395,48	16977400	2838452	1.45	0.24	41188
4 <i>f_ww_ccbs</i>	5,74	28700	6453	1.7	0.38	110
4 <i>f_ww_ccds</i>	165,57	827850	151787	1.5	0.28	2294
4f_ww_uubd	0.05	250	50	2.0	0.4	1
4 <i>f_ww_uusd</i>	165,94	829700	127241	0.8	0.13	1073
4f_ww_zz_udud	1570,40	7852000	1255551	1.5	0.24	19102
4f_ww_zz_cscs	1568,94	7844700	1406147	1.6	0.29	22514
4 <i>f_zz_</i> utut	83,09	415450	91366	5.5	1.2	4997
4 <i>f_zz_dtdt</i>	226,20	1131000	311025	6.4	1.8	19845
4f_zz_uu_notd	95,65	478250	113345	5.9	1.4	6675
4f_zz_cc_nots	96,04	480200	133496	6.0	1.7	7949

The relative statistical uncertainty: MVA method

- The dominant background after final selection are ee \rightarrow qqqq backgrounds
- The high cross-section 2f → qq̄ background show good response to the preselection and multivariate analysis. The obtained relative statistical precision is 1.9 % with the corresponding signal efficiency of 29%

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S} \approx 1.9\%$$

Static cut analysis

- The statatic cut variables used:
 - Invariant masses: 80 <m_z < 100 GeV</p>
 - □ Invariant masses: 115 <m_H < 135 GeV</p>
 - Number of particle flow objects NPFO > 90 GeV
 - Highest PtJet <90</p>
 - transverse momentum of jets that comprise Higgs boson < 80 GeV</p>
 - Jet transitions: y₂₃ < 2.4</p>
 - □ y₃₄ <2.4
 - □ Y₄₅<2.7
 - □ y₅₆ < 3.2
 - □ y₆₇ <3.5
 - Arithmetic variable Energy*Theta of the Z boson 8000< EnThW<14000</p>
 - Arithmetic variable Energy*Theta of the Z boson 10000< EnThZ<17000</p>

Static cuts analysis results

sample	$\sigma[fb]$	#evts/5ab ⁻¹	ε _{tot mva} [%]	ε _{static} [%]	evts after final selectior
$qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	16,12	80600	28.85	28.9	23293
other Higgs decays non $qqh \rightarrow q\bar{q}WW^* \rightarrow q\bar{q}q\bar{q}q\bar{q}$	127,27	636350	6.1	8.1	51544
2 <i>f</i>	49561,30	247806500	0.002	0.02	49561
4f_ww_cuxx	3395,48	16977400	0.24	1.5	254661
4f_ww_ccbs	5,74	28700	0.38	1.9	545
4f_ww_ccds	165,57	827850	0.28	1.6	13246
4f_ww_uubd	0.05	250	0.4	1.8	5
4f_ww_uusd	165,94	829700	0.13	1.3	10786
4f_ww_zz_udud	1570,40	7852000	0.24	1.4	109928
4f_ww_zz_cscs	1568,94	7844700	0.29	1.6	125515
4 <i>f_zz_</i> utut	83,09	415450	1.2	2.4	9971
4f_zz_dtdt	226,20	1131000	1.8	2.9	32799
4f_zz_uu_notd	95,65	478250	1.4	2.5	11956.
4f_zz_cc_nots	96,04	480200	1.7	2.9	13926

- After the static cut analysis ~98% of the background is reduced.
- The obtained relative statistical uncertainty 3.6 % with the corresponding signal efficiency of 29%

Summary

- The fully hadronic decay is most abundant channel in the $H \rightarrow WW^*$ decay
- In Higgsstrahlung, $Z \rightarrow qq$, this decay leads complex central six jet final state
- High cross section hadronic backgrounds
- □ The channel is analysed with two types of analysis flow:
 - multivariate analysis
 - static cut analysis
- The multivariate approach showed better reduction capabilities in comparison to the static cut analysis
- □ This is due to lack of distinct cut variables for hadronic final state
- The obtained relative statistical precission with the static cut analysis is 3.6% with the signal efficiency of 29 %, while the result obtained with the multivariate analysis is 1.9% with the corresponding signal efficiency of 29% also, for the integrated luminosity of 5 ab⁻¹
- Many thanks to Manqi Ruan for the invitation to do this analysis at CepC!

Fast jet

Fast Jet 2.4.2. intrinsically limits the jet opening (FastJet 2.4.2/JetDefinition.cc) which results in the slight underestimation of the reconstructed invariant masses of the Z and the Higgs boson

- Overload Fast Jet 2.4.2 with Fast Jet 3.1.2 where R_{max} is not limited moderate increases in R – (not to interfere with beam jets)
- The mean of the signal with the slightly higher R would reproduce the Higgs and Z mass slightly better boundary beam jets
- The possible difference in the distributions would not make any visible or significant impact on the analysis result
- The suggestion is of principal nature

end

- Leptonic, semileptonic final states make use of final state leptons (e, μ) , which are products of boson decays: Higgs, Z
- These leptons are stable before reaching the detector (exc. ISR,FSR) \Rightarrow provide effective cutting variables at the generator level m_H, m_Z, \dots
- Opposite to leptonic and semileptonic final states, fully hadronic final states does not exhibit these property and are characterized by lack of so effective cutting variables on the MC level
- For hadronic final states at generator level (WHIZARD) we can employ the cut on invariant mass fo diquark m_{qq} > at least 50 GeV (probably could go much higher) in the case of 2f would cut significant generator production and reconstruction time and storage space, but all analyses that use this particular background should be considered
- Also, if necessary
 – postgenerator moderately effective cuts can be applied on the variables which can be constructed from boson decay product quarks taken before the fragmentation and hadronization
- **Todays update from Bingyang -2f reconstructede ~2.000.000! therefore not necessary**

MC variables that can be used in preselection

- Variables that can be used to filter the generated files that are going to be used for the reconstruction
- 1. The event shape variables can be constructed using the Monte Carlo information:
 - one can use the final state MC particles to construct thrust, oblateness, sphericity, aplanarity
- 2. Number of final state particles efficiently can reduce 2f hadronic bck

Table 19: The information of the four fermions background samples

Process	Final states	σ [fb]	ILC result [fb]	Events expected	Events generated
zz_hOutut	up, up, up, up	83.09	83.05	419604	419584
zz_h0dtdt	down, down, down, down	226.20	226.42	1142310	1142270
zz_h0uu_notd	uq, uq, (sq, bq), (sq, bq)	95.65	96.00	483032	483045
zz_h0cc_nots	cq, cq, (dq, bq), (dq, bq)	96.04	96.28	485002	485016
zz_sl0nu_up	$nu_{\mu,\tau}, nu_{\mu,\tau}, up, up$	81.72	81.86	412686	412709
zz_sl0nu_down	nuµ,T, nuµ,T, down, down	134.86	135.48	681043	681041
zz_sl0mu_up	mu, mu, up, up	82.38	83.10	416019	416008
zz_s10mu_down	mu, mu, down, down	127.96	128.84	646198	646181
zz_sl0tau_up	tau, tau, up, up	39.78	40.02	200889	200882
zz_sl0tau_down	tau, tau, down, down	64.30	64.64	324715	324709
zz_104tau	$\tau^{-}, \tau^{+}, \tau^{-}, \tau^{+}$	4.38	4.41	22119	100000
zz_104mu	$\mu^{-}, \mu^{+}, \mu^{-}, \mu^{+}$	14.57	14.63	73578	100000
zz_10taumu	$\tau^{-}, \tau^{+}, \mu^{-}, \mu^{+}$	17.54	17.73	88577	100000
zz_10mumu	$\nu_{\tau}, \bar{\nu}_{\tau}, \mu^-, \mu^+$	18.17	18.34	91758	100000
zz_10tautau	$\nu_{\mu}, \bar{\nu}_{\mu}, \tau^-, \tau^+$	9.20	9.27	46460	100000
ww_h0cuxx	uq, cq, down, down	3395.48	3413.36	17147189	17147188
ww_h0uubd	uq, uq, dq, bq	0.05	0.05	252	100000
ww_h0uusd	uq, uq, sq, bq	165.94	167.21	837997	838010
ww_h0ccbs	cq, cq, sq, bq	5.74	5.75	28987	100000
ww_h0ccds	cq, cq, sq, dq	165.57	166.30	836128	836128
ww_sl0muq	mu, nu, up, down	2358.69	2369.79	11911394	11911396
ww_sl0tauq	tau, nu, up, down	2351.98	2368.64	11877519	11877519
ww_1011	$mu, tau, nu_{\mu}, nu_{\tau}$	392.96	394.73	1984448	1984437
zzorww_h0udud	uq, uq, dq, dq	1570.40	1579.63	7930514	7930514
zzorww_h0cscs	cq, cq, sq, sq	1568.94	1572.41	7923141	7923140
zzorww_10mumu	$mu, mu, nu_{\mu}, nu_{\mu}$	214.81	216.12	1084790	1084777
zzorww_10tautau	$tau, tau, nu_{\tau}, nu_{\tau}$	205.84	206.38	1039492	1039510
sze_l0tau	e^-, e^+, τ^-, τ^+	150.14	150.30	758207	758206
sze_10mu	e^-, e^+, μ^-, μ^+	852.18	850.70	4303527	4303528
sze_10nunu	$e^-, e^+, v_{\mu,\tau}, \bar{v}_{\mu,\tau}$	29.62	29.41	149581	149583
sze_sl0uu	e, e, up, up	195.86	195.37	989093	989109
sze_sl0dd	e, e, down, down	128.72	128.20	650036	649940
sznu_10mumu	$v_e, \bar{v}_e, \mu^-, \mu^+$	43.33	43.41	218816	218824
sznu_10tautau	$v_e, \bar{v}_e, \tau^-, \tau^+$	14.57	14.61	73578	100000
sznu_s10nu_up	v_e, \bar{v}_e, up, up	56.09	55.95	283254	283254
sznu_s10nu_down	$v_e, \bar{v}_e, down, down$	91.28	90.95	460964	460961
sw_l0mu	$e, nu_e, mu, nu_{\mu,\tau}$	429.20	430.64	2167446	2167447
sw_10tau	e, nue, tau, nu _{µ,r}	429.42	430.27	2168556	2168556
sw_sl0qq	e, nue, up, down	2579.31	2581.03	13025535	13025535
szeorsw_101	$e^-, e^+, \gamma_e, \overline{\gamma}_e$	249.34	249.74	1259167	1259165