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Why the Sun is shining? 1

In 1854, von Helmholtz proposed that the enormous energy
radiated by the Sun is due to the gravitational contraction

Conflicting Estimates of the Solar Age

Hermann von Helmholtz
(1821 - 1894)

William Thomson
(1824 - 1907)

The Lord Kelvin

In 1862, Lord Kelvin estimated the solar age as 20 million years,
based on the gravitational energy arguments

Charles Darwin
(1809 - 1882)

In 1859, Darwin estimated the solar age to be 300 million years,
based on the biological and geological arguments



Why the Sun is shining? 2

Francis Aston
(1877 - 1945)

Mass (4H) > Mass (He)

Arthur Eddington
(1882 - 1944)

Soon after Aston measured the masses
of hydrogen and helium atoms in 1920,
Eddington recognized that

4H → He + 0.7% of
the mass (lasting for
100 billion years)

But how does this 
process happen?

George Gamow
(1904 - 1968)

The estimated temperature 𝑇 = 1.1 keV (cf. 𝑇 = 1.34 keV )

Virial Theorem   

𝐸kin = −
1

2
〈𝐸grav〉

𝑀sun = 1.99 × 1033g

𝑅sun = 6.96 × 1010cm

𝐸grav = −3.2 keV

Gamow Peak
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𝟑He + 𝟑He → 𝟒He + 𝟐p 𝟑He + 𝟒He → 𝟕Be + 𝜸 𝟑He + p → 𝟒He + e+ + 𝝂𝒆

𝟐H + p → 𝟑He + 𝜸

p + p → 𝟐H + e+ + 𝝂𝒆 p + e− + p → 𝟐H + 𝝂𝒆

𝟕Be + e− → 𝟕Li + 𝝂𝒆
𝟕Be + e− →

𝟕
Li∗ + 𝝂𝒆

𝟕Be + p → 𝟖B + 𝜸
𝟖B →

𝟖
Be∗ + e+ + 𝝂𝒆

𝟕Li + p → 𝟒He + 𝟒He
𝟖
Be∗ → 𝟒He + 𝟒He

Hydrogen 
Burning: 
pp Chains

Hans A. Bethe
(1906–2005)

“Energy Production in Stars”

H.A. Bethe, PR 55 (1939) 434



Solar Neutrino Spectrum 4

WaterChlorineGallium



John Bahcall
1934 – 2005

Raymond Davis Jr.
1914 – 2006

Detection of Solar Neutrinos 5

Solar Neutrinos: the key to understand thermal nuclear reactions in the Sun 
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Solar Neutrinos: the key to understand thermal nuclear reactions in the Sun 

Bruno Pontecorvo
(1913 - 1993)

Pontecorvo
(1946)

Ray Davis Jr.
(1914 - 2006)

Homestake

Homestake Experiment

Solar 
Neutrino 
Problem



Detection of Solar Neutrinos 7

Inverse Beta Decay
Gallium  Germanium

GALLEX/GNO (1991–2003)

(SNU = Solar Neutrino Unit = 1 
Absorption / sec / 1036 Atoms)

Predicted: 123 + 9 -7 SNU



Cherenkov Effect

Water

Elastic scattering or 
CC reaction

Light

Light

Cherenkov 
Ring

Electron or Muon
(Charged Particle)



Super-Kamiokande Neutrino Detector (since 1996) 9

42 m

39.3 m



Super-Kamiokande: Sun in the Light of Neutrinos 10



Solar Neutrino Problem 11



R. Davis M. Koshiba R. Giacconi

"for pioneering contributions to astrophysics, in 
particular for the detection of cosmic neutrinos"

K-II paper, PRL 58 (1987) 1490
received 10 March, published 6 April

IMB paper, PRL 58 (1987) 1494
received 13 March, published 6 April

Davis and Koshiba made extraordinary 
contributions in part because “solar 
neutrino experiments have a sensitivity 
that is not accessible [with neutrinos] 
from the Earth,” says Bahcall.

Phys. Rev. Focus 10 (2002) 18

Nobel Prize in Physics 2002 12
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Arthur B. McDonald
(SNO Spokesperson 
since 1987)

陈华森
Herbert H. Chen

(1942-1987)
Phys. Rev. Lett. 55 (1985) 1534

“Direct Approach to Resolve 
the Solar Neutrino Problem”

SNO: Solving the Solar Neutrino Problem 13

1942: Born in Chongqing

1964: B.Sc. Caltech

1968: Ph.D. Princeton 
(Advisor: Sam Treiman)

1984: SNO spokesperson

103 ton heavy water



Homestake

7Be

8B

CNO

Chlorine

Gallex/GNO
SAGE

CNO

7Be

pp

8B

Gallium

Electron-Neutrino Detectors

(Super-)
Kamiokande

8B

Water
e+ e e+ e

SNO

8B

e+dp+p+e
Heavy Water

8B

 + d p + n + 

Heavy Water

All Flavors

SNO

8B

Water
 + e  + e

SNO: Solving the Solar Neutrino Problem 14



SNO: Solving the Solar Neutrino Problem 15

Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 89 (2002) 011301



Flavor Conversions of Solar Neutrinos 16

𝑷𝒆𝒆 ≈ 1 −
𝟏

𝟐
𝐬𝐢𝐧𝟐𝟐𝜽𝟏𝟐

𝑷𝒆𝒆 ≈ 𝐬𝐢𝐧𝟐𝜽𝟏𝟐

Vacuum Limit

MSW Matter Effects

• Neutrino electron scattering

• Liquid scintillator technology
(~ 300 tons)

• Low energy threshold
(~ 60 keV)

• Online since 16 May 2007

Borexino



Neutrino Oscillations in Matter

Lincoln Wolfenstein
(1923-2015)

W

Refraction of light in media

Refraction of neutrinos 
in media, where both 
CC and NC interactions 
contribute to refractive 
indices (not far from 1)

When neutrinos are traveling in matter, the effect of coherent forward scattering with 
background particles leads to a modification of their energies. Such a modification can 
be described by a potential energy. The difference between the potentials of distinct 
neutrino flavors is relevant for neutrino oscillations.
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Matter Potentials for Neutrinos

Ordinary matter contains only electrons, neutrons and protons:

Incoherent scattering

We take the number 
density of particles 
in normal  matter to 
be about 1024 cm-3.

First of all, we look at the Hamiltonian of free neutrinos in vacuum

 ℋ
 |𝜈1
 |𝜈2
=

𝐸1 0
0 𝐸2

 |𝜈1
 |𝜈2
= 𝐸

1 0
0 1

+
1

2𝐸

𝑚1
2 0

0 𝑚2
2

 |𝜈1
 |𝜈2

in mass basis

in flavor basis

 ℋ
𝑐𝜃 −𝑠𝜃
𝑠𝜃 𝑐𝜃

 |𝜈𝑒
 |𝜈𝜇

=
1

2𝐸

𝑚1
2 0

0 𝑚2
2

𝑐𝜃 −𝑠𝜃
𝑠𝜃 𝑐𝜃

 |𝜈𝑒
 |𝜈𝜇

𝓗 =
𝟏

𝟐𝑬
𝑼

𝒎𝟏
𝟐 𝟎

𝟎 𝒎𝟐
𝟐

𝑼†

 |𝜈𝑒
 |𝜈𝜇

=
𝑐𝜃 𝑠𝜃
−𝑠𝜃 𝑐𝜃

 |𝜈1
 |𝜈2
≡ 𝑈

 |𝜈1
 |𝜈2
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Matter Potentials for Neutrinos

Effective Hamiltonian density for weak interactions

ℋcc(𝑥) =
𝐺F

2
 𝜈𝑒(𝑥)𝛾

𝜇 1 − 𝛾5 𝑒(𝑥)  𝑒(𝑥)𝛾𝜇 1 − 𝛾5 𝜈𝑒(𝑥)

Fierz transformation

ℋcc(𝑥) =
𝐺F

2
 𝜈𝑒(𝑥)𝛾

𝜇 1 − 𝛾5 𝜈𝑒(𝑥)  𝑒(𝑥)𝛾𝜇 1 − 𝛾5 𝑒(𝑥)

 ℋcc 𝑥 =
𝐺F

2
 𝜈𝑒 𝑥 𝛾𝜇 1 − 𝛾5 𝜈𝑒 𝑥  𝑑3𝑝𝑒𝒇 𝒑𝒆

Averaged Hamiltonian density over the electron background

×
𝟏

𝟐
 

ℎ𝑒=±

𝑒(𝑝𝑒 , ℎ𝑒)  𝑒(𝑥)𝛾𝜇 1 − 𝛾5 𝑒(𝑥) 𝑒(𝑝𝑒, ℎ𝑒)

Distribution function of electrons

Averaged over electron helicities

|  𝑒 𝑝𝑒, ℎ𝑒 =
1

2𝐸𝑉
𝑎𝑒

ℎ𝑒 †
|  0

 𝑑3𝑝𝑒𝑓 𝑝𝑒 = 𝑁𝑒𝑉  ℋcc 𝑥 =
𝐺F

2
 𝑑3𝑝𝑒𝑓 𝑝𝑒  𝜈𝑒 𝑥

𝒑𝒆𝝁

𝑬𝒆𝑽
𝛾𝜇 1 − 𝛾5 𝜈𝑒 𝑥
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Matter Potentials for Neutrinos

 ℋcc 𝑥 =
𝐺F

2
 𝑑3𝑝𝑒𝑓 𝑝𝑒  𝜈𝑒 𝑥

𝒑𝒆𝝁

𝑬𝒆𝑽
𝜸𝝁 1 − 𝛾5 𝜈𝑒 𝑥

=
𝐺F

2𝑽
 𝜈𝑒 𝑥  𝑑3𝑝𝑒𝑓 𝑝𝑒 𝜸𝟎 −

𝒑𝒆 ⋅  𝛾

𝑬𝒆
1 − 𝛾5 𝜈𝑒 𝑥

=
𝐺F

2𝑽
 𝜈𝑒 𝑥 𝜸𝟎 1 − 𝛾5 𝜈𝑒 𝑥 𝑵𝒆𝑽

= 2𝐺F𝑁𝑒𝜈𝑒L
† 𝑥 𝜈𝑒L 𝑥 𝑉𝑒 = 2𝐺F𝑁𝑒

Then, we obtain the Hamiltonian for neutrinos travelling in matter

Matter Potential
(minus sign for  𝝂)

𝓗𝐦 =
𝟏

𝟐𝑬
𝑼

𝒎𝟏
𝟐 𝟎

𝟎 𝒎𝟐
𝟐

𝑼† +
𝑽𝒆 𝟎
𝟎 𝟎

=
𝟏

𝟐𝑬
𝑼

𝒎𝟏
𝟐 𝟎

𝟎 𝒎𝟐
𝟐

𝑼† +
𝑨 𝟎
𝟎 𝟎

NC interactions contribute 
equally to all flavors, which
is irrelevant for oscillations

𝐴 = 2 2𝐺F𝑁𝑒𝐸

Example: evaluate the electron number density in Earth matter of a 
mass density 𝝆 = 𝟒 𝐠/𝐜𝐦𝟑. Note that the normal matter is electrically 
neutral, so the number fraction of electrons is 𝒀𝒆 = 𝟎. 𝟓.

20

𝑵𝒆 =
𝝆

𝟏 𝐠/𝐜𝐦𝟑
𝑵𝑨𝒀𝒆 = 𝟐𝑵𝑨 𝐜𝐦

−𝟑
𝑽𝒆 = 2𝐺F𝑁𝑒 = 𝟏. 𝟓𝟗 × 𝟏𝟎−𝟏𝟑 𝐞𝐕



Effective Mixing Parameters

𝓗𝐦 =
𝟏

𝟒𝑬
𝑼

−𝚫𝒎𝟐𝟏
𝟐 𝟎

𝟎 +𝚫𝒎𝟐𝟏
𝟐

𝑼† +
𝑨 𝟎
𝟎 −𝑨

+
𝒎𝟏

𝟐 +𝒎𝟐
𝟐 + 𝑨

𝟒𝑬

The Hamiltonian in a more compact form:

𝓗𝐦 =
𝟏

𝟒𝑬

𝑨 − 𝚫𝒎𝟐𝟏
𝟐 𝒄𝟐𝜽 𝚫𝒎𝟐𝟏

𝟐 𝒔𝟐𝜽
𝚫𝒎𝟐𝟏

𝟐 𝒔𝟐𝜽 𝚫𝒎𝟐𝟏
𝟐 𝒄𝟐𝜽 − 𝑨

in flavor basis

Converted into the mass basis

𝓗𝐦 =
𝟏

𝟒𝑬
 𝑼

−𝚫 𝒎𝟐𝟏
𝟐 𝟎

𝟎 +𝚫 𝒎𝟐𝟏
𝟐

 𝑼†

Mixing matrix & mass states in matter

 |𝝂𝒆
 |𝝂𝝁

=
𝒄 𝜽 𝒔 𝜽
−𝒔 𝜽 𝒄 𝜽

 | 𝝂𝟏
 | 𝝂𝟐
≡  𝑼

 | 𝝂𝟏
 | 𝝂𝟐

𝚫 𝒎𝟐𝟏
𝟐 = 𝚫𝒎𝟐𝟏

𝟐 𝒄𝟐𝜽 − 𝑨
𝟐
+ 𝚫𝒎𝟐𝟏

𝟐 𝒔𝟐𝜽
𝟐 𝐭𝐚𝐧𝟐 𝜽 =

𝚫𝒎𝟐𝟏
𝟐 𝒔𝟐𝜽

𝚫𝒎𝟐𝟏
𝟐 𝒄𝟐𝜽 − 𝑨

Relationship between the mixing angle (mass difference) in vacuum and that in matter
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Some Discussions

𝐭𝐚𝐧𝟐 𝜽 =
𝚫𝒎𝟐𝟏

𝟐 𝒔𝟐𝜽

𝚫𝒎𝟐𝟏
𝟐 𝒄𝟐𝜽 − 𝑨

Mixing angle in matter
W

S

M

Lincoln Wolfenstein
(1923-2015)

Stanislav Mikheyev
(1940-2011)

Alexei Smirnov
(1951-)

MSW resonance  𝜽 = 𝟒𝟓°

Resonance condition: 

𝚫𝒎𝟐𝟏
𝟐 𝒄𝟐𝜽 = 𝟐 𝟐𝑮𝐅𝑵𝒆𝑬

Example: assume that the energy of solar 8B neutrinos is E = 10 MeV, 
and take 𝑵𝒆 = 𝟏𝟎𝟎 𝑵𝑨/𝐜𝐦

𝟑 for 𝝆 = 𝟏𝟓𝟎 𝐠/𝐜𝐦𝟑 in the solar center. The 
density decreases from the center to the surface. Check if the MSW 
resonance can be reached, given 𝜟𝒎𝟐𝟏

𝟐 = 𝟕. 𝟓 × 𝟏𝟎−𝟓 𝐞𝐕𝟐.

Solution:

𝑨 = 𝟐 𝟐𝑮𝐅𝑵𝒆𝑬 ≈ 𝟐 𝟐 ⋅ 𝟏. 𝟏𝟕 × 𝟏𝟎−𝟓 𝐆𝐞𝐕−𝟐 ⋅ 𝟏𝟎 𝐌𝐞𝐕 ⋅ (𝟔 × 𝟏𝟎𝟐𝟓 𝐜𝐦−𝟑)

≈ 𝟏. 𝟓 × 𝟏𝟎−𝟒 𝐞𝐕𝟐

𝑽𝒆 = 𝟐𝑮𝐅𝑵𝒆 ≈ 𝟕. 𝟓 × 𝟏𝟎−𝟓 𝐞𝐕𝟐/ 𝐌𝐞𝐕

𝑃 𝜈𝑒 → 𝜈𝜇 = sin2 2𝜃 sin2
Δ𝑚2𝐿

4𝐸

 𝑃 𝜈𝑒 → 𝜈𝜇 = sin2 2  𝜃 sin2
Δ  𝑚2𝐿

4𝐸A useful relation: 𝟏𝟗𝟕 𝐌𝐞𝐕 ⋅ 𝟏 𝐟𝐦 = 𝟏
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𝓗𝐦 =
𝟏

𝟒𝑬
 𝑼

−𝚫 𝒎𝟐𝟏
𝟐 𝟎

𝟎 +𝚫 𝒎𝟐𝟏
𝟐

 𝑼†

Varying Matter Density

The matter density 𝝆(𝒓) is varying in astrophysical environments, like the Sun and SNe

𝐭𝐚𝐧𝟐 𝜽(𝒓) =
𝚫𝒎𝟐𝟏

𝟐 𝒔𝟐𝜽

𝚫𝒎𝟐𝟏
𝟐 𝒄𝟐𝜽 − 𝟐 𝟐𝑮𝐅𝑵𝒆(𝒓)𝑬

Recall how to calculate neutrino oscillation probabilities in matter of a constant density

 |𝝂𝒆
 |𝝂𝝁

=  𝑼
 | 𝝂𝟏
 | 𝝂𝟐

𝒊
𝐝

𝐝𝒓

 |𝝂𝒆(𝒓)

 |𝝂𝝁(𝒓)
=

𝟏

𝟒𝑬
 𝑼

−𝚫 𝒎𝟐𝟏
𝟐 𝟎

𝟎 +𝚫 𝒎𝟐𝟏
𝟐

 𝑼†
 |𝝂𝒆(𝒓)

 |𝝂𝝁(𝒓)

𝒊
𝐝

𝐝𝒓
 𝑼

 | 𝝂𝟏(𝒓)
 | 𝝂𝟐(𝒓)

=
𝟏

𝟒𝑬
 𝑼

−𝚫 𝒎𝟐𝟏
𝟐 𝟎

𝟎 +𝚫 𝒎𝟐𝟏
𝟐

 | 𝝂𝟏(𝒓)
 | 𝝂𝟐(𝒓)

𝒊
𝐝

𝐝𝒓

 | 𝝂𝟏(𝒓)
 | 𝝂𝟐(𝒓)
=

𝟏

𝟒𝑬

−𝚫 𝒎𝟐𝟏
𝟐 𝟎

𝟎 +𝚫 𝒎𝟐𝟏
𝟐

−𝒊 𝑼†   𝑼
 | 𝝂𝟏(𝒓)
 | 𝝂𝟐(𝒓)

 𝑼†   𝑼 =
𝟎 𝟏
−𝟏 𝟎

𝐝 𝜽

𝐝𝒓

𝒊
𝐝

𝐝𝒓

 | 𝝂𝟏(𝒓)
 | 𝝂𝟐(𝒓)
=

𝟏

𝟒𝑬

−𝚫 𝒎𝟐𝟏
𝟐 −𝟒𝒊𝑬𝐝 𝜽/𝐝𝒓

𝟒𝒊𝑬𝐝 𝜽/𝐝𝒓 +𝚫 𝒎𝟐𝟏
𝟐

 | 𝝂𝟏(𝒓)
 | 𝝂𝟐(𝒓)

If 𝝆(𝒓) or  𝜽 𝒓 changes 
slowly, no transition 
between mass states 

23



Adiabatic Evolution

𝒊
𝐝

𝐝𝒓

 | 𝝂𝟏(𝒓)
 | 𝝂𝟐(𝒓)
=

𝟏

𝟒𝑬

−𝚫 𝒎𝟐𝟏
𝟐 −𝟒𝒊𝑬𝐝 𝜽/𝐝𝒓

𝟒𝒊𝑬𝐝 𝜽/𝐝𝒓 +𝚫 𝒎𝟐𝟏
𝟐

 | 𝝂𝟏(𝒓)
 | 𝝂𝟐(𝒓)

Evolution of mass states in matter

express 
𝐝 𝜽

𝐝𝒓
in terms of  

𝐝𝑨

𝐝𝒓

Adiabaticity parameter: the ratio between the diagonal and off-diagonal elements

𝜸 =
𝚫 𝒎𝟐𝟏

𝟐

𝟒𝑬|𝐝 𝜽/𝐝𝒓|
=

𝚫  𝒎𝟐𝟏
𝟐 𝟐

𝟐𝑬𝐬𝐢𝐧𝟐 𝜽 |𝐝𝑨/𝐝𝒓|

Adiabatic condition: 𝜸 ≫ 𝟏

𝓗 = 𝑼(𝜽)
𝒎𝟏

𝟐 𝟎

𝟎 𝒎𝟐
𝟐

𝑼†(𝜽)

Mass ordering: sign of 𝚫𝒎𝟐

invariant under

𝜽 ⇒
𝝅

𝟐
− 𝜽 𝒎𝟏

𝟐 ⇔𝒎𝟐
𝟐

 |𝝂𝒆 ⇒  +|𝝂𝒆  |𝝂𝝁 ⇒  −|𝝂𝝁

𝜽 ∈ [𝟎,
𝝅

𝟒
]

𝚫𝒎𝟐𝟏
𝟐 > 𝟎

𝜽 ∈ [
𝝅

𝟒
,
𝝅

𝟐
]

𝚫𝒎𝟐𝟏
𝟐 < 𝟎

Giunti & Kim, 2007

 𝒎𝟏
𝟐

 𝒎𝟐
𝟐

𝝂𝒆
𝝂𝟐

𝝂𝝁
𝝂𝟏

24



Three-flavor Oscillations in Matter

The effective Hamiltonian in matter

ℋm =
1

2𝐸
𝑉

𝑚1
2 0 0

0 𝑚2
2 0

0 0 𝑚3
2

𝑉† +
𝐴 0 0
0 0 0
0 0 0

Diagonalize the effective Hamiltonian in matter

 𝑉†ℋm
 𝑉 =

1

2𝐸

 𝑚1
2 0 0

0  𝑚2
2 0

0 0  𝑚3
2

Parametrize  𝑉 in the standard way by three mixing 
angles  𝜽𝒊𝒋 and one CP-violating phase  𝜹 in matter 

Oscillation probabilities in matter of a constant density

 𝑃 𝜈𝛼 → 𝜈𝛽 = 𝛿𝛼𝛽 − 4 

𝑖<𝑗

3

Re  𝑉𝛼𝑖  𝑉𝛽𝑗  𝑉𝛼𝑗
∗  𝑉𝛽𝑖

∗ sin2
Δ  𝑚𝑗𝑖

2𝐿

4𝐸

+8  𝒥 

𝛾

𝜀𝛼𝛽𝛾 sin
Δ  𝑚21

2 𝐿

4𝐸
sin

Δ  𝑚32
2 𝐿

4𝐸
sin

Δ  𝑚31
2 𝐿

4𝐸

The oscillation probabilities for antineutrinos can be obtained by 𝑽 ⇒ 𝑽∗ and 𝑨 ⇒ −𝑨
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The LMA-MSW Solution

Vacuum oscillation

MSW

𝑷𝒆𝒆 ≈ 1 −
𝟏

𝟐
𝐬𝐢𝐧𝟐𝟐𝜽𝟏𝟐

𝑷𝒆𝒆 ≈ 𝐬𝐢𝐧𝟐𝜽𝟏𝟐

For high-energy 8B neutrinos

𝑷𝒆𝒆
𝟖𝐁 =0.31

𝑷𝒆𝒆
𝟕𝐁𝐞 =0.56  |𝝂𝒆(𝑹)

 |𝝂𝝁(𝑹)
=

𝒄𝜽 𝒔𝜽
−𝒔𝜽 𝒄𝜽

 | 𝝂𝟏(𝑹)
 | 𝝂𝟐(𝑹)

 | 𝝂𝟏(𝑹)
 | 𝝂𝟐(𝑹)
=

𝟏 𝟎
𝟎 𝟏

 | 𝝂𝟏(𝟎)
 | 𝝂𝟐(𝟎)

 | 𝝂𝟏(𝟎)
 | 𝝂𝟐(𝟎)
=

𝒄 𝜽 −𝒔 𝜽
𝒔 𝜽 𝒄 𝜽

 |𝝂𝒆(𝟎)

 |𝝂𝝁(𝟎)

at production r = 0

adiabatic evolution

on the solar surface r = R

survival probability

𝑷𝒆𝒆 = 𝒄 𝜽
𝟐𝒄𝜽

𝟐 + 𝒔 𝜽
𝟐𝒔𝜽

𝟐 ⟶ 𝐬𝐢𝐧𝟐𝜽

 𝜽 ⟶  𝝅 𝟐 𝐚𝐬 𝑨 ≫ 𝚫𝒎𝟐

For low-energy 7Be neutrinos

𝑷𝒆𝒆 ≈ 1 −
𝟏

𝟐
𝐬𝐢𝐧𝟐𝟐𝜽

Oscillations in vacuum

𝜽 ∈ [𝟎,
𝝅

𝟒
]

𝚫𝒎𝟐𝟏
𝟐 > 𝟎

𝜽 ∈ [
𝝅

𝟒
,
𝝅

𝟐
]

𝚫𝒎𝟐𝟏
𝟐 < 𝟎

For the MSW resonance to happen

𝜽𝟏𝟐 = 𝟑𝟒°

Normal neutrino 
mass ordering
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𝑉 =
1 0 0
0 𝑐23 𝑠23
0 −𝑠23 𝑐23

𝑐13 0 𝑠13𝑒
−𝑖𝛿

0 1 0
−𝑠13𝑒

𝑖𝛿 0 𝑐13

𝑐12 𝑠12 0
−𝑠12 𝑐12 0
0 0 1

𝑒𝑖𝜌 0 0
0 𝑒𝑖𝜎 0
0 0 1

Standard Parametrization of the PMNS Matrix

𝜽𝟐𝟑 ~ 𝟒𝟓∘

Atmospheric,
LBL accelerator

𝜽𝟏𝟑 ~ 𝟗∘

Reactor,
LBL accelerator

𝜽𝟏𝟐 ~ 𝟑𝟒∘

Solar,
KamLAND

0ν2β, LNV?

Quarks vs. Leptons: A big puzzle of fermion flavor mixings

|𝑈| = |𝑉| =

CKM PMNS

Hierarchy! Approximate μ-τ symmetry?

|𝚫𝒎𝟑𝟐
𝟐 | ~ 𝟐. 𝟓 × 𝟏𝟎−𝟑 eV𝟐 𝜹 ~ ? 𝚫𝒎𝟐𝟏

𝟐 ~ 𝟖 × 𝟏𝟎−𝟓 eV𝟐

What we have learned? 27



E.Kh. Akhmedov

 𝑷 𝝂𝒆 → 𝝂𝝁 = 𝐬𝐢𝐧𝟐 𝟐 𝜽 𝐬𝐢𝐧𝟐
𝜟 𝒎𝟐𝟏

𝟐 𝑳

𝟒𝑬

Matter Effects: Short-distance Propagation 28

𝚫 𝒎𝟐𝟏
𝟐 = 𝚫𝒎𝟐𝟏

𝟐 𝒄𝟐𝜽 − 𝑨
𝟐
+ 𝚫𝒎𝟐𝟏

𝟐 𝒔𝟐𝜽
𝟐

𝐬𝐢𝐧𝟐 𝜽 =
𝚫𝒎𝟐𝟏

𝟐

𝚫 𝒎𝟐𝟏
𝟐
𝐬𝐢𝐧𝟐𝜽

𝑷 𝝂𝒆 → 𝝂𝝁 = 𝐬𝐢𝐧𝟐 𝟐𝜽 𝐬𝐢𝐧𝟐
𝜟𝒎𝟐𝟏

𝟐 𝑳

𝟒𝑬
Vacuum 𝑷 𝝂𝒆 → 𝝂𝝁 = 𝐬𝐢𝐧𝟐 𝟐𝜽

𝜟𝒎𝟐𝟏
𝟐 𝑳

𝟒𝑬

𝟐

Matter  𝑷 𝝂𝒆 → 𝝂𝝁 = 𝐬𝐢𝐧𝟐 𝟐𝜽
𝜟𝒎𝟐𝟏

𝟐 𝑳

𝟒𝑬

𝟐

Useful relations

In the limit of a short distance, or
more precisely a small oscillation
phase, the matter effects die out
more rapidly than the oscillation
effects themselves!!!



Matter Effects: Short-distance Propagation 29

𝒊
𝐝

𝐝𝒓

 |𝝂𝒆(𝒓)

 |𝝂𝝁(𝒓)
=

𝟏

𝟒𝑬

𝑨 − 𝚫𝒎𝟐𝟏
𝟐 𝒄𝟐𝜽 𝚫𝒎𝟐𝟏

𝟐 𝒔𝟐𝜽
𝚫𝒎𝟐𝟏

𝟐 𝒔𝟐𝜽 𝚫𝒎𝟐𝟏
𝟐 𝒄𝟐𝜽 − 𝑨

 |𝝂𝒆(𝒓)

 |𝝂𝝁(𝒓)

Look again at the Schrödinger-like equation for the flavor evolution

In the limit r = L is small, the perturbation theory is applicable, so one has

 |𝝂𝝁(𝑳) = −𝒊
𝚫𝒎𝟐𝟏

𝟐 𝑳

𝟒𝑬
𝒔𝟐𝜽  |𝝂𝒆(𝟎)  𝑷 𝝂𝒆 → 𝝂𝝁 = 𝐬𝐢𝐧𝟐 𝟐𝜽

𝜟𝒎𝟐𝟏
𝟐 𝑳

𝟒𝑬

𝟐

The main reasons for the previous observation are

 The limit for the perturbation theory works well

 The matter term A appears in the diagonal places

 The initial state is a pure flavor eigenstate

To have large matter 
effects, take the initial 
state to not be a pure 
flavor state

How can we produce a neutrino state that is a coherent superposition of
flavor eigenstates?

 Mass eigenstates are coherent superposition of flavor eigenstates

 Flavor eigenstates that propagate first in vacuum then enter into matter
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Sun

Earth

SK

 𝒎𝟏
𝟐

 𝒎𝟐
𝟐

𝝂𝒆
𝝂𝟐

𝝂𝟏

𝝂𝟐 𝝂𝒆

Daytime at Super-Kamiokande

𝑷𝟐𝒆 ≈ |𝑼𝒆𝟐|
𝟐 = 𝐬𝐢𝐧𝟐𝜽𝟏𝟐

Nighttime at Super-Kamiokande

Earth

SK
𝝂𝒆𝝂𝟐

 𝑷𝟐𝒆 ≡ 𝑷(𝝂𝟐 → 𝝂𝒆)

How to calculate this
probability?

Now neutrinos traverse 
the Earth matter
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Two-flavor approximation and a constant matter density

𝒊
𝐝

𝐝𝒓

 |𝝂𝒆(𝒓)

 |𝝂𝝁(𝒓)
=

𝟏

𝟒𝑬
𝑼

−𝚫𝒎𝟐𝟏
𝟐 𝟎

𝟎 +𝚫𝒎𝟐𝟏
𝟐

𝑼† +
𝑨 𝟎
𝟎 −𝑨

 |𝝂𝒆(𝒓)

 |𝝂𝝁(𝒓)

Transform into the vacuum-mass basis

𝒊
𝐝

𝐝𝒓

 |𝝂𝟏(𝒓)
 |𝝂𝟐(𝒓)
=

𝟏

𝟒𝑬

−𝚫𝒎𝟐𝟏
𝟐 𝟎

𝟎 +𝚫𝒎𝟐𝟏
𝟐

+ 𝑼† 𝑨 𝟎
𝟎 −𝑨

𝑼
 |𝝂𝟏(𝒓)
 |𝝂𝟐(𝒓)

which describes how the vacuum mass eigenstates evolve in matter

 𝓗𝐦 =
𝟏

𝟒𝑬

−𝚫𝒎𝟐𝟏
𝟐 𝟎

𝟎 +𝚫𝒎𝟐𝟏
𝟐

+ 𝑼† 𝑨 𝟎
𝟎 −𝑨

𝑼

=
𝟏

𝟒𝑬

𝑨𝒄𝟐𝜽 − 𝚫𝒎𝟐𝟏
𝟐 𝑨𝒔𝟐𝜽

𝑨𝒔𝟐𝜽 𝚫𝒎𝟐𝟏
𝟐 − 𝑨𝒄𝟐𝜽

𝑼 ≡
𝒄𝜽 𝒔𝜽
−𝒔𝜽 𝒄𝜽

=
𝟏

𝟒𝑬
𝑨𝒔𝟐𝜽 ⋅ 𝝈𝟏 + 𝑨𝒄𝟐𝜽 − 𝚫𝒎𝟐𝟏

𝟐 ⋅ 𝝈𝟑

Pauli matrices

 |𝝂𝒊(𝑳) = 𝐞𝐱𝐩 −𝒊 𝓗𝐦𝑳  |𝝂𝒊(𝟎)

𝐞𝐱𝐩 −𝒊𝒂 ⋅ 𝝈𝑳

= 𝐜𝐨𝐬 𝒂𝑳 − 𝒊
𝒂 ⋅ 𝝈

𝒂
𝐬𝐢𝐧(𝒂𝑳)

𝒂 =
𝟏

𝟒𝑬
(𝑨𝒔𝟐𝜽, 𝟎, 𝑨𝒄𝟐𝜽 − 𝚫𝒎𝟐𝟏

𝟐 )

𝒂 =
𝟏

𝟒𝑬
𝑨𝒔𝟐𝜽

𝟐 + 𝑨𝒄𝟐𝜽 − 𝚫𝒎𝟐𝟏
𝟐 𝟐
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 |𝝂𝒊(𝑳) = 𝐜𝐨𝐬 𝒂𝑳 − 𝒊
𝒂 ⋅ 𝝈

𝒂
𝐬𝐢𝐧(𝒂𝑳)  |𝝂𝒊(𝟎)

 𝑨𝟐𝒆 ≡ 𝑨 𝝂𝟐 → 𝝂𝒆 = 𝝂𝒆 𝓣(𝑳) 𝝂𝟐(𝟎)

 |𝝂𝒆 = 𝑼† 𝟏
𝟎

=
𝒄𝜽
𝒔𝜽

 |𝝂𝟐 =
𝟎
𝟏

= 𝒄𝜽 𝒔𝜽 𝐜𝐨𝐬 𝒂𝑳 − 𝒊
𝒂 ⋅ 𝝈

𝒂
𝐬𝐢𝐧(𝒂𝑳)

𝟎
𝟏

in the chosen basis

= 𝒔𝜽 𝐜𝐨𝐬 𝒂𝑳 −
𝒊

𝟒𝑬𝒂
𝑨 + 𝚫𝒎𝟐𝟏

𝟐 𝐬𝐢𝐧(𝒂𝑳)

 𝑷𝟐𝒆 ≡  𝑨𝟐𝒆
𝟐
= 𝐬𝐢𝐧𝟐𝜽 +

𝑨𝚫𝒎𝟐𝟏
𝟐

𝟏𝟔𝑬𝟐𝒂𝟐
𝐬𝐢𝐧𝟐𝟐𝜽 𝐬𝐢𝐧𝟐(𝒂𝑳)

𝒂 =
𝟏

𝟒𝑬
𝑨𝟐 − 𝟐𝚫𝒎𝟐𝟏

𝟐 𝑨𝒄𝟐𝜽 + 𝚫𝒎𝟐𝟏
𝟐 𝟐

𝒂 =
𝟏

𝟒𝑬
𝑨𝒔𝟐𝜽

𝟐 + 𝑨𝒄𝟐𝜽 − 𝚫𝒎𝟐𝟏
𝟐 𝟐

𝟏

𝟒𝑬
𝚫𝒎𝟐𝟏

𝟐 𝒔𝟐𝜽
𝟐
+ 𝑨 − 𝚫𝒎𝟐𝟏

𝟐 𝒄𝟐𝜽
𝟐

𝚫 𝒎𝟐𝟏
𝟐

𝟒𝑬

𝑷𝟐𝒆 = 𝐬𝐢𝐧𝟐𝜽𝟏𝟐

𝑨 𝐨𝐫 𝑳 → 𝟎



The difference in the probability for  |𝝂𝟐 to be detected as  |𝝂𝒆

Day-Night Asymmetry of Solar Neutrinos 33

 𝑷𝟐𝒆 − 𝑷𝟐𝒆 =
𝑨𝚫𝒎𝟐𝟏

𝟐

𝚫  𝒎𝟐𝟏
𝟐 𝟐

𝐬𝐢𝐧𝟐𝟐𝜽 𝐬𝐢𝐧𝟐(
𝚫  𝒎𝟐𝟏

𝟐 𝑳

𝟒𝑬
)

Now we consider the production of 8B neutrinos and their flavor conversion
inside the Sun (see the references Carlson, PRD, 1986; Guth/Randall/Serna,
JHEP, 1999; Blennow/Ohlsson/Snellman, PRD, 2004)

Daytime survival probability

Nighttime survival probability

ki the fraction of  |𝝂𝒊

Two-flavor approximation

One has to calculate k2 and P2e for
solar neutrinos and the Earth matter
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Neutrino production

Neutrino fraction

Flavor mixing angle at
the production point

Normalized distribution function for
neutrino production

Transitional
probability
from i to j

Non-adiabatic case

For the Sun, it is easy to estimate the adiabaticity parameter (E = 10 MeV)
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Final results for two-flavor mixing

𝑷𝑺𝑬 − 𝑷𝑺 = −𝒄𝟏𝟑
𝟔 𝑫𝟑𝝂

𝑨𝚫𝒎𝟐𝟏
𝟐

𝚫 𝒎𝟐𝟏
𝟐 𝟐

𝐬𝐢𝐧𝟐𝟐𝜽 𝐬𝐢𝐧𝟐(
𝚫  𝒎𝟐𝟏

𝟐 𝑳

𝟒𝑬
)

Negative in the production region of 8B

PSE – PS > 0 regeneration effects

Final results for three-flavor mixing

𝑷𝑺𝑬 − 𝑷𝑺 = −𝑫𝟐𝝂

𝑨𝚫𝒎𝟐𝟏
𝟐

𝚫  𝒎𝟐𝟏
𝟐 𝟐

𝐬𝐢𝐧𝟐𝟐𝜽 𝐬𝐢𝐧𝟐(
𝚫  𝒎𝟐𝟏

𝟐 𝑳

𝟒𝑬
)

Matter potential multiplied by 𝒄𝟏𝟑
𝟐

Day-Night Asymmetry

𝑨𝐃𝐍 ≡ −𝟐
𝑷𝑺𝑬 − 𝑷𝑺
𝑷𝑺𝑬 + 𝑷𝑺

This can be observed by comparing between
the elastic neutrino-electron scattering events
in the daytime and those at night.
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Observed at the 3σ level

Question: is it possible to observe lunar matter effects on solar neutrinos
when the solar eclipses take place?

Expectation: According to the previous discussions and Akhmedov’s work,
even if neutrinos are traveling in the Moon with a short distance, the
matter effects should not be that suppressed.

K. Abe, et al., arXiv :1606 .07538
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Solar eclipses

Before reaching 
the Earth, solar ν’s 
may first traverse 
the Moon during 
the solar eclipses

Formulation:

Consider the incoherent mass states, they enter into the lunar matter and 
then propagate in vacuum for a distance L, finally reach the Earth

Mean radius: 1737.1 km  (0.273 of Earth's)

The Moon

Mean density: 3.344 g/cm3 (0.606 of Earth's)



Coherence or Decoherence 38

Two scenarios:

 The distance L between the Moon and the Earth is very long such that 
the coherence of neutrino mass states is lost before reaching the Earth

The probability for

after passing through the Moon

 The coherence of neutrino mass states is kept until they reach the Earth

The probability for

Connection

The amplitude for
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Evolution in the vacuum mass basis

𝐻m =
1

2𝐸

𝑚1
2 0 0

0 𝑚2
2 0

0 0 𝑚3
2

+ 𝑈†
𝐴 0 0
0 0 0
0 0 0

𝑈

Mass eigenvalues

Unitary matrix

Transition amplitude
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𝝂𝟐 𝝂𝒆

Sun

Earth

Moon

𝒅𝐌 𝝂𝒋
′ 𝑳 SK

Oscillation Length
Moon to Earth

Before arriving in the SK detector, neutrinos experience many cycles
of oscillations and thus the situation is equivalent to decoherence

〱〱

The calculations of k factors are the same as for the DN asymmetry
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Matter density

Electron fraction

Matter term

In the limit

𝑷𝑺
𝑴 − 𝑷𝑺

𝑷𝑺𝑬 − 𝑷𝑺
=
𝑨cos 𝟐𝜽𝟏𝟐

𝚫𝒎𝟐𝟏
𝟐

≃ 𝟏. 𝟐%

Extremely difficult 
to observe solar 
eclipses via 
neutrinos



Summary

 Matter effects are very important for neutrino oscillations. We investigate 
the possibility to observe solar eclipses in the neutrino light. In principle 
this is possible due to the lunar matter effects, similar to the Earth matter 
effects on solar neutrinos

 It turns out that the lunar matter effects are smaller by a factor of 1.2% 
compared to the ordinary day-night asymmetry

 The reason for such a suppression is due to the loss of coherence during 
the propagation between the Moon and the Earth

 We set up a general formalism to calculate the impact of any astrophysical 
objects in the way of neutrino propagation. Other examples include the 
UHE neutrinos and solar atmospheric neutrinos

Thanks for your attention!


