Solar Eclipses in the Neutrino Light

Shun Zhou (IHEP\&UCAS)

Based on Nud. Phys. B 931 (2018) 324 in collaboration with Guo-yuan Huang and Jun-hao Liu

Seminar @ Center for High Energy Physics, Peking University, 2018-7-5

Why the Sun is shining?

Conflicting Estimates of the Solar Age

In 1854, von Helmholtz proposed that the enormous energy radiated by the Sun is due to the gravitational contraction
In 1859, Darwin estimated the solar age to be $\mathbf{3 0 0}$ million years, based on the biological and geological arguments
In 1862, Lord Kelvin estimated the solar age as 20 million years, based on the gravitational energy arguments

The Lord Kelvin
Hermann von Helmholtz (1821-1894)

William Thomson (1824-1907)

Charles Darwin (1809-1882)

Why the Sun is shining?

Soon after Aston measured the masses of hydrogen and helium atoms in 1920, Eddington recognized that

Mass (4H) > Mass (He)

$4 \mathrm{H} \rightarrow \mathrm{He}+0.7 \%$ of the mass (lasting for 100 billion years)

But how does this process happen?
Francis Aston (1877-1945)

The estimated temperature $T=1.1 \mathrm{keV}(\mathrm{cf} . T=1.34 \mathrm{keV})$

Arthur Eddington (1882-1944)
Virial Theorem

$$
\left\langle E_{\text {kin }}\right\rangle=-\frac{1}{2}\left\langle E_{\text {grav }}\right\rangle
$$

$$
M_{\text {sun }}=1.99 \times 10^{33} \mathrm{~g}
$$

$$
R_{\text {sun }}=6.96 \times 10^{10} \mathrm{~cm}
$$

$\left\langle E_{\text {grav }}\right\rangle=-3.2 \mathrm{keV}$

Why the Sun is shining?

Hydrogen Burning: pp Chains

"Energy Production in Stars" 100\%

H.A. Bethe, PR 55 (1939) 434

$$
4 p \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{e}^{+}+2 v_{e}+26.73 \mathrm{MeV}
$$

$$
\begin{array}{r}
\mathbf{p}+\mathbf{p} \rightarrow{ }^{2} \mathbf{H}+\mathbf{e}^{+}+\boldsymbol{v}_{e} \\
<0.420 \mathrm{MeV}
\end{array}
$$

$$
\begin{array}{r}
\mathbf{p}+\mathbf{e}^{-}+\mathbf{p} \rightarrow{ }^{2} \mathbf{H}+\boldsymbol{v}_{e} \\
1.442 \mathrm{MeV} \\
\hline
\end{array}
$$

$$
{ }^{2} \mathrm{H}+\mathrm{p} \rightarrow{ }^{3} \mathrm{He}+\gamma
$$

Hans A. Bethe (1906-2005)
${ }^{3} \mathrm{He}+{ }^{3} \mathrm{He} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{p}$

$$
{ }^{3} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{7} \mathrm{Be}+\gamma
$$

$$
{ }^{3} \mathrm{He}+\mathrm{p} \rightarrow{ }^{4} \mathrm{He}+\mathrm{e}^{+}+v_{e}
$$

Detection of Solar Neutrinos

Solar Neutrinos: the key to understand thermal nuclear reactions in the Sun

> The principal energy source for main-sequence stars like the sun is believed to be the fusion, in the deep interior of the star, of four protons to form an alpha particle. ${ }^{1}$ The fusion reactions are thought to be initiated by the sequence ${ }^{1} \mathrm{H}(p$, $\left.e^{+} \nu\right)^{2} \mathrm{H}(p, \gamma)^{3} \mathrm{He}$ and terminated by the following sequences: (i) ${ }^{3} \mathrm{He}\left({ }^{3} \mathrm{He}, 2 p\right)^{4} \mathrm{He}$; (ii) ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}-$ $\left(e^{-} \nu\right)^{7} \mathrm{Li}(p, \alpha)^{4} \mathrm{He}$; and (iii) ${ }^{3} \mathrm{He}(\alpha, \gamma)^{7} \mathrm{Be}(p, \gamma)^{8} \mathrm{~B}-$ $\left(e^{+} \nu\right)^{8} \mathrm{Be}^{*}(\alpha)^{4} \mathrm{He}$. No direct evidence for the existence of nuclear reactions in the interiors of stars has yet been obtained because the mean free path for photons emitted in the center of a
star is typically less than 10^{-10} of the radius of the star. Only neutrinos, with their extremely small interaction cross sections, can enable us to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars.

The most promising method ${ }^{2}$ for detecting solar neutrinos is based upon the endothermic reaction $(Q=-0.81 \mathrm{MeV}){ }^{37} \mathrm{Cl}\left(\nu_{\text {solar }}, e^{-}\right)^{37} \mathrm{Ar}$, which was first discussed as a possible means of detecting neutrinos by Pontecorvo ${ }^{3}$ and Alvarez. ${ }^{4}$ In this note, we predict the number of absorptions of

SOLAR NEUTRINOS. II. EXPERIMENTAL*

Raymond Davis, Jr.
Chemistry Department, Brookhaven National Laboratory, Upton, New York (Received 6 January 1964)

The prospect of observing solar neutrinos by means of the inverse beta process ${ }^{37} \mathrm{Cl}\left(\nu, e^{-}\right)^{37} \mathrm{Ar}$ induced us to place the apparatus previously described ${ }^{1}$ in a mine and make a preliminary search. This experiment served to place an upper limit on the flux of extraterrestrial neutrinos. These

3 counts in 18 days is probably entirely due to the background activity. However, if one assumes that this rate corresponds to real events and uses the efficiencies mentioned, the upper limit of the neutrino capture rate in 1000 gallons of $\mathrm{C}_{2} \mathrm{Cl}_{4}$ is $\leqslant 0.5$ per day or $\varphi \bar{\sigma} \leqslant 3 \times 10^{-34} \sec ^{-1}\left({ }^{37} \mathrm{Cl} \text { atom }\right)^{-1}$.

Solar Neutrinos: the key to understand thermal nuclear reactions in the Sun

Ray Davis Jr. (1914-2006)
Solar
Neutrino Problem

Detection of Solar Neutrinos

Inverse Beta Decay Gallium \rightarrow Germanium

GALLEX/GNO (1991-2003)

Cherenkov Effect

Cherenkov
Ring

Elastic scattering or

 (Charged Particle) CC reaction
Electron or Muon

Super-Kamiokande Neutrino Detector (since 1996) 9

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

R. Davis

M. Koshiba

R. Giacconi
"for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos" K-II paper, PRL 58 (1987) 1490 received 10 March, published 6 April

IMB paper, PRL 58 (1987) 1494 received 13 March, published 6 April

Davis and Koshiba made extraordinary contributions in part because "solar neutrino experiments have a sensitivity that is not accessible [with neutrinos] from the Earth," says Bahcall.

Phys. Rev. Focus 10 (2002) 18

Direct Approach to Resolve the Solar-Neutrino Problem

Herbert H. Chen
Department of Physics, University of California, Irvine, California 92717
(Received 27 June 1985)
A direct approach to resolve the solar-neutrino problem would be to observe neutrinos by use of both neutral-current and charged-current reactions. Then, the total neutrino flux and the electron-neutrino flux would be separately determined to provide independent tests of the neutrino-oscillation hypothesis and the standard solar model. A large heavy-water Cherenkov detector, sensitive to neutrinos from ${ }^{8} \mathrm{~B}$ decay via the neutral-curent reaction $\nu+d \rightarrow \nu+p+n$ and the charged-current reaction $\nu_{e}+d \rightarrow e^{-}+p+p$, is suggested for this purpose.

1942: Born in Chongqing
1964: B.Sc. Caltech
1968: Ph.D. Princeton (Advisor: Sam Treiman)

1984: SNO spokesperson
Phys. Rev. Lett. 55 (1985) 1534

$\mathrm{CC}:$	$v_{\mathrm{e}}+d \rightarrow p+p+e^{-}$
$\mathrm{NC}:$	$v_{\alpha}+d \rightarrow p+n+v_{\alpha}$
$\mathrm{ES}:$	$v_{\alpha}+e^{-} \rightarrow v_{\alpha}+e^{-}$

Arthur B. McDonald (SNO Spokesperson since 1987)

SNO: Solving the Solar Neutrino Problem

Electron-Neutrino Detectors

All Flavors

Ahmad et al. (SNO Collaboration), Phys. Rev. Lett. 89 (2002) 011301

Neutrino oscillations in matter
L. Wolfenstein

Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 (Received 6 October 1977; revised manuscript received 5 December 1977)

The effect of coherent forward scattering must be taken into account when considering the oscillations of neutrinos traveling through matter. In particular, for the case of massless neutrinos for which vacuum oscillations cannot occur, oscillations can occur in matter if the neutral current has an off-diagonal piece connecting different neutrino types. Applications discussed are solar neutrinos and a proposed experiment involving transmission of neutrinos through 1000 km of rock.

Lincoln Wolfenstein (1923-2015)

Refraction of light in media
$v_{e}: \exp \left[i p x\left(n_{\mathrm{nc}}+n_{\mathrm{cc}}-1\right)\right]$
$v_{\mu}: \exp \left[i p x\left(n_{\mathrm{nc}}-1\right)\right]$
$v_{\tau}: \exp \left[i p x\left(n_{\mathrm{nc}}-1\right)\right]$

Refraction of neutrinos in media, where both CC and NC interactions contribute to refractive indices (not far from 1)

When neutrinos are traveling in matter, the effect of coherent forward scattering with background particles leads to a modification of their energies. Such a modification can be described by a potential energy. The difference between the potentials of distinct neutrino flavors is relevant for neutrino oscillations.

Ordinary matter contains only electrons, neutrons and protons:

Incoherent scattering
$\ell_{\text {matter }} \sim \frac{10^{14} \mathrm{~cm}}{(E / \mathrm{GeV})}$
We take the number density of particles in normal matter to be about $\mathbf{1 0}^{\mathbf{2 4}} \mathbf{c m}^{-3}$.

First of all, we look at the Hamiltonian of free neutrinos in vacuum
$\widehat{\mathcal{H}}\binom{\left|v_{1}\right\rangle}{\left|v_{2}\right\rangle}=\left(\begin{array}{cc}E_{1} & 0 \\ 0 & E_{2}\end{array}\right)\binom{\left|v_{1}\right\rangle}{\left|v_{2}\right\rangle}=\left[E\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)+\frac{1}{2 E}\left(\begin{array}{cc}m_{1}^{2} & 0 \\ 0 & m_{2}^{2}\end{array}\right)\right]\binom{\left|v_{1}\right\rangle}{\left|v_{2}\right\rangle} \quad$ in mass basis in flavor basis

$$
\binom{\left|v_{e}\right\rangle}{\left|v_{\mu}\right\rangle}=\left(\begin{array}{cc}
c_{\theta} & s_{\theta} \\
-s_{\theta} & c_{\theta}
\end{array}\right)\binom{\left|v_{1}\right\rangle}{\left|v_{2}\right\rangle} \equiv U\binom{\left|v_{1}\right\rangle}{\left|v_{2}\right\rangle}
$$

$$
\widehat{\mathcal{H}}\left(\begin{array}{cc}
c_{\theta} & -s_{\theta} \\
s_{\theta} & c_{\theta}
\end{array}\right)\binom{\left|v_{e}\right\rangle}{\left|v_{\mu}\right\rangle}=\frac{1}{2 E}\left(\begin{array}{cc}
m_{1}^{2} & 0 \\
0 & m_{2}^{2}
\end{array}\right)\left(\begin{array}{cc}
c_{\theta} & -s_{\theta} \\
s_{\theta} & c_{\theta}
\end{array}\right)\binom{\left|v_{e}\right\rangle}{\left|v_{\mu}\right\rangle} \square \boldsymbol{\mathcal { H } = \frac { \mathbf { 1 } } { \mathbf { 2 E } } \boldsymbol { U } (\begin{array} { c c }
{ \boldsymbol { m } _ { \mathbf { 1 } } ^ { \mathbf { 2 } } } & { \mathbf { 0 } } \\
{ \mathbf { 0 } } & { \boldsymbol { m } _ { \mathbf { 2 } } ^ { 2 } }
\end{array}) \boldsymbol { U } ^ { \dagger }}
$$

Effective Hamiltonian density for weak interactions

$$
\mathcal{H}_{\mathrm{cc}}(x)=\frac{G_{\mathrm{F}}}{\sqrt{2}}\left[\bar{v}_{e}(x) \gamma^{\mu}\left(1-\gamma_{5}\right) e(x)\right]\left[\bar{e}(x) \gamma_{\mu}\left(1-\gamma_{5}\right) v_{e}(x)\right]
$$

Fierz transformation

$$
\mathcal{H}_{\mathrm{cc}}(x)=\frac{G_{\mathrm{F}}}{\sqrt{2}}\left[\bar{v}_{e}(x) \gamma^{\mu}\left(1-\gamma_{5}\right) v_{e}(x)\right]\left[\bar{e}(x) \gamma_{\mu}\left(1-\gamma_{5}\right) e(x)\right]
$$

Averaged Hamiltonian density over the electron background $\overline{\mathcal{H}}_{\mathrm{cc}}(x)=\frac{G_{\mathrm{F}}}{\sqrt{2}} \bar{v}_{e}(x) \gamma^{\mu}\left(1-\gamma_{5}\right) v_{e}(x) \int d^{3} p_{e} f\left(\boldsymbol{p}_{e}\right)$ Distribution function of electrons
Averaged over electron helicities $\times \frac{\mathbf{1}}{\mathbf{2}} \sum_{h_{e}= \pm}\left\langle e\left(p_{e}, h_{e}\right)\right| \bar{e}(x) \gamma_{\mu}\left(1-\gamma_{5}\right) e(x)\left|e\left(p_{e}, h_{e}\right)\right\rangle$
$\left|e\left(p_{e}, h_{e}\right)\right\rangle=\frac{1}{2 E V} a_{e}^{\left(h_{e}\right) \dagger}|0\rangle$
$\int d^{3} p_{e} f\left(p_{e}\right)=N_{e} V$

$$
\overline{\mathcal{H}}_{\mathrm{cc}}(x)=\frac{G_{\mathrm{F}}}{\sqrt{2}} \int d^{3} p_{e} f\left(p_{e}\right) \bar{v}_{e}(x) \frac{\boldsymbol{p}_{e \mu}}{\boldsymbol{E}_{\boldsymbol{e}} \boldsymbol{V}} \gamma^{\mu}\left(1-\gamma_{5}\right) v_{e}(x)
$$

$$
\begin{aligned}
& \overline{\mathcal{H}}_{\mathrm{cc}}(x)=\frac{G_{\mathrm{F}}}{\sqrt{2}} \int d^{3} p_{e} f\left(p_{e}\right) \bar{v}_{e}(x) \frac{\boldsymbol{p}_{e \mu}}{\boldsymbol{E}_{\boldsymbol{e}} V} \gamma^{\mu}\left(1-\gamma_{5}\right) v_{e}(x) \\
&=\frac{G_{\mathrm{F}}}{\sqrt{2} V} \bar{v}_{e}(x) \int d^{3} p_{e} f\left(p_{e}\right)\left(\gamma^{0}-\frac{\vec{p}_{e} \cdot \vec{\gamma}}{\boldsymbol{E}_{e}}\right)\left(1-\gamma_{5}\right) v_{e}(x) \\
&=\frac{G_{\mathrm{F}}}{\sqrt{2} V} \bar{v}_{e}(x) \gamma^{0}\left(1-\gamma_{5}\right) v_{e}(x) N_{e} V \\
&=\sqrt{2} G_{\mathrm{F}} N_{e} v_{e \mathrm{~L}}^{\dagger}(x) v_{e \mathrm{~L}}(x) \quad \begin{array}{l}
\text { NC interactions contribute } \\
\text { equally to all flavors, which } \\
\text { is irrelevant for oscillations }
\end{array} \\
& v_{e}, \nu_{\mu}, \nu_{\tau}
\end{aligned}
$$

Then, we obtain the Hamiltonian for neutrinos travelling in matter $A=2 \sqrt{2} G_{\mathrm{F}} N_{e} E$

$$
\mathcal{H}_{\mathrm{m}}=\frac{1}{2 E} U\left(\begin{array}{cc}
m_{1}^{2} & 0 \\
0 & m_{2}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{cc}
V_{e} & \mathbf{0} \\
0 & 0
\end{array}\right)=\frac{1}{2 E}\left[U\left(\begin{array}{cc}
\boldsymbol{m}_{1}^{2} & 0 \\
0 & m_{2}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right)\right]
$$

Example: evaluate the electron number density in Earth matter of a mass density $\rho=4 \mathrm{~g} / \mathrm{cm}^{3}$. Note that the normal matter is electrically neutral, so the number fraction of electrons is $Y_{e}=\mathbf{0 . 5}$.

$$
N_{e}=\frac{\rho}{1 \mathrm{~g} / \mathrm{cm}^{3}} N_{A} Y_{e}=2 N_{A} \mathrm{~cm}^{-3}
$$

$$
V_{\boldsymbol{e}}=\sqrt{2} G_{\mathrm{F}} N_{e}=1.59 \times \mathbf{1 0}^{-13} \mathbf{e V}
$$

The Hamiltonian in a more compact form:

$$
\begin{gathered}
\mathcal{H}_{\mathrm{m}}=\frac{1}{4 E}\left[U\left(\begin{array}{cc}
-\Delta m_{21}^{2} & 0 \\
0 & +\Delta m_{21}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{cc}
A & 0 \\
0 & -A
\end{array}\right)\right]+\frac{m_{1}^{2}+m_{2}^{2}+A}{4 E} \\
\mathcal{H}_{\mathrm{m}}=\frac{1}{4 E}\left(\begin{array}{cc}
A-\Delta m_{21}^{2} c_{2 \theta} & \Delta m_{21}^{2} s_{2 \theta} \\
\Delta m_{21}^{2} s_{2 \theta} & \Delta m_{21}^{2} c_{2 \theta}-A
\end{array}\right) \quad \text { in flavor basis }
\end{gathered}
$$

Converted into the mass basis
Mixing matrix \& mass states in matter

$$
\mathcal{H}_{\mathrm{m}}=\frac{1}{4 E} \widetilde{U}\left(\begin{array}{cc}
-\Delta \widetilde{m}_{21}^{2} & 0 \\
0 & +\Delta \widetilde{m}_{21}^{2}
\end{array}\right) \widetilde{U}^{\dagger} \quad\binom{\left|v_{e}\right\rangle}{\left|v_{\mu}\right\rangle}=\left(\begin{array}{cc}
c_{\widetilde{\theta}} & s_{\widetilde{\theta}} \\
-\boldsymbol{s}_{\widetilde{\theta}} & c_{\widetilde{\theta}}
\end{array}\right)\binom{\left|\widetilde{v}_{1}\right\rangle}{\left|\widetilde{v}_{2}\right\rangle} \equiv \widetilde{U}\binom{\left|\widetilde{v}_{1}\right\rangle}{\left|\widetilde{v}_{2}\right\rangle}
$$

$$
\Delta \widetilde{m}_{21}^{2}=\sqrt{\left(\Delta m_{21}^{2} c_{2 \theta}-A\right)^{2}+\left(\Delta m_{21}^{2} s_{2 \theta}\right)^{2}} \quad \tan 2 \widetilde{\theta}=\frac{\Delta m_{21}^{2} s_{2 \theta}}{\Delta m_{21}^{2} c_{2 \theta}-A}
$$

Relationship between the mixing angle (mass difference) in vacuum and that in matter

Mixing angle in matter
$\tan 2 \widetilde{\theta}=\frac{\Delta m_{21}^{2} s_{2 \theta}}{\Delta m_{21}^{2} c_{2 \theta}-A}$
MSW resonance $\quad \widetilde{\boldsymbol{\theta}}=45^{\circ}$

Resonance condition:
$\Delta m_{21}^{2} c_{2 \theta}=2 \sqrt{2} G_{\mathrm{F}} N_{e} E$

w

Stanislav Mikheyev Alexei Smirnov Lincoln Wolfenstein (1940-2011) (1951-)

Example: assume that the energy of solar ${ }^{8} \mathbf{B}$ neutrinos is $E=10 \mathrm{MeV}$, and take $N_{e}=100 N_{A} / \mathrm{cm}^{3}$ for $\rho=150 \mathrm{~g} / \mathrm{cm}^{3}$ in the solar center. The density decreases from the center to the surface. Check if the MSW resonance can be reached, given $\Delta m_{21}^{2}=7.5 \times 10^{-5} \mathrm{eV}^{2}$.
Solution:
$A=2 \sqrt{2} G_{\mathrm{F}} N_{e} E \approx 2 \sqrt{2} \cdot\left(1.17 \times 10^{-5} \mathrm{GeV}^{-2}\right) \cdot 10 \mathrm{MeV} \cdot\left(6 \times 10^{25} \mathrm{~cm}^{-3}\right)$

$$
\approx 1.5 \times 10^{-4} \mathrm{eV}^{2}
$$

$$
V_{e}=\sqrt{2} G_{\mathrm{F}} N_{e} \approx 7.5 \times 10^{-5} \mathrm{eV}^{2} / \mathrm{MeV}
$$

A useful relation: $\mathbf{1 9 7} \mathbf{~ M e V} \cdot \mathbf{1 f m}=\mathbf{1}$

$$
\begin{aligned}
& P\left(v_{e} \rightarrow v_{\mu}\right)=\sin ^{2} 2 \theta \sin ^{2} \frac{\Delta m^{2} L}{4 E} \\
& \tilde{P}\left(v_{e} \rightarrow v_{\mu}\right)=\sin ^{2} 2 \tilde{\theta} \sin ^{2} \frac{\Delta \widetilde{m}^{2} L}{4 E}
\end{aligned}
$$

The matter density $\rho(r)$ is varying in astrophysical environments, like the Sun and SNe $\tan 2 \widetilde{\theta}(r)=\frac{\Delta m_{21}^{2} s_{2 \theta}}{\Delta m_{21}^{2} c_{2 \theta}-2 \sqrt{2} G_{\mathrm{F}} N_{e}(r) E} \quad \mathcal{H}_{\mathrm{m}}=\frac{1}{4 E} \widetilde{U}\left(\begin{array}{cc}-\Delta \widetilde{m}_{21}^{2} & 0 \\ 0 & +\Delta \widetilde{m}_{21}^{2}\end{array}\right) \widetilde{U}^{\dagger}$
Recall how to calculate neutrino oscillation probabilities in matter of a constant density

$$
\binom{\left|v_{e}\right\rangle}{\left|v_{\mu}\right\rangle}=\widetilde{U}\binom{\left|\widetilde{v}_{1}\right\rangle}{\left|\widetilde{v}_{2}\right\rangle}
$$

$$
\widetilde{U}^{+} \dot{\widetilde{U}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & \mathbf{0}
\end{array}\right) \frac{\mathbf{d} \widetilde{\boldsymbol{\theta}}}{\mathbf{d} r}
$$

If $\rho(r)$ or $\widetilde{\boldsymbol{\theta}}(r)$ changes slowly, no transition between mass states

$$
\begin{aligned}
& i \frac{\mathrm{~d}}{\mathrm{~d} r}\binom{\left|v_{e}(r)\right\rangle}{\left|v_{\mu}(r)\right\rangle}=\frac{1}{4 E} \widetilde{\boldsymbol{U}}\left(\begin{array}{cc}
-\Delta \widetilde{m}_{21}^{2} & 0 \\
0 & +\Delta \widetilde{m}_{21}^{2}
\end{array}\right) \widetilde{U}^{\dagger}\binom{\left|v_{e}(r)\right\rangle}{\left|v_{\mu}(r)\right\rangle}
\end{aligned}
$$

$$
\begin{aligned}
& i \frac{\mathbf{d}}{\mathbf{d} r}\binom{\left|\widetilde{v}_{1}(r)\right\rangle}{\left|\widetilde{v}_{2}(r)\right\rangle}=\left[\frac{1}{4 E}\left(\begin{array}{cc}
-\Delta \widetilde{m}_{21}^{2} & 0 \\
0 & +\Delta \widetilde{m}_{21}^{2}
\end{array}\right)-i \widetilde{U}^{\dagger} \dot{\widetilde{U}}\right]\binom{\left|\widetilde{v}_{1}(r)\right\rangle}{\left|\widetilde{v}_{2}(r)\right\rangle} \\
& i \frac{\mathrm{~d}}{\mathrm{~d} r}\binom{\left|\widetilde{v}_{1}(r)\right\rangle}{\left|\widetilde{v}_{2}(r)\right\rangle}=\frac{1}{4 E}\left(\begin{array}{cc}
-\Delta \widetilde{m}_{21}^{2} & -4 i E \mathrm{~d} \widetilde{\theta} / \mathrm{d} r \\
4 i E \mathrm{~d} \widetilde{\theta} / \mathrm{d} r & +\Delta \widetilde{m}_{21}^{2}
\end{array}\right)\binom{\left|\widetilde{v}_{1}(r)\right\rangle}{\left|\widetilde{v}_{2}(r)\right\rangle}
\end{aligned}
$$

Evolution of mass states in matter

$$
i \frac{\mathrm{~d}}{\mathrm{~d} r}\binom{\left|\widetilde{v}_{1}(r)\right\rangle}{\left|\widetilde{v}_{2}(r)\right\rangle}=\frac{1}{4 E}\left(\begin{array}{cc}
-\Delta \widetilde{m}_{21}^{2} & -4 i E \mathrm{~d} \widetilde{\theta} / \mathrm{d} r \\
4 i E \mathrm{~d} \widetilde{\theta} / \mathrm{d} r & +\Delta \widetilde{m}_{21}^{2}
\end{array}\right)\binom{\left|\widetilde{v}_{1}(r)\right\rangle}{\left|\widetilde{v}_{2}(r)\right\rangle} \quad \text { express } \frac{\mathrm{d} \widetilde{\theta}}{\mathrm{~d} r} \text { in terms of } \frac{\mathrm{d} A}{\mathrm{~d} r}
$$

Adiabaticity parameter: the ratio between the diagonal and off-diagonal elements

$$
\gamma=\frac{\Delta \widetilde{m}_{21}^{2}}{4 E|\mathrm{~d} \widetilde{\theta} / \mathrm{d} r|}=\frac{\left(\Delta \widetilde{m}_{21}^{2}\right)^{2}}{2 E \sin 2 \widetilde{\theta}|\mathrm{~d} A / \mathrm{d} r|}
$$

Mass ordering: sign of Δm^{2}

$$
\mathcal{H}=\boldsymbol{U}(\boldsymbol{\theta})\left(\begin{array}{cc}
\boldsymbol{m}_{1}^{2} & 0 \\
\mathbf{0} & \boldsymbol{m}_{\mathbf{2}}^{2}
\end{array}\right) U^{\dagger}(\theta)
$$

invariant under

$$
\begin{array}{|lc|}
\hline \theta \Rightarrow \frac{\pi}{2}-\theta & \boldsymbol{m}_{\mathbf{1}}^{2} \Leftrightarrow \boldsymbol{m}_{\mathbf{2}}^{2} \\
\left|\boldsymbol{v}_{\boldsymbol{e}}\right\rangle \Rightarrow+\left|\boldsymbol{v}_{e}\right\rangle & \left|v_{\mu}\right\rangle \Rightarrow-\left|\boldsymbol{v}_{\boldsymbol{\mu}}\right\rangle \\
\hline \theta \in\left[\mathbf{0}, \frac{\pi}{\mathbf{4}}\right] \\
\Delta \boldsymbol{m}_{\mathbf{2 1}}^{2}>\mathbf{0}
\end{array} \quad \begin{aligned}
& \theta \in\left[\frac{\pi}{\mathbf{4}}, \frac{\pi}{\mathbf{2}}\right] \\
& \Delta \boldsymbol{m}_{\mathbf{2 1}}^{2}<\mathbf{0}
\end{aligned}
$$

The effective Hamiltonian in matter

$$
\mathcal{H}_{\mathrm{m}}=\frac{1}{2 E}\left[V\left(\begin{array}{ccc}
m_{1}^{2} & 0 & 0 \\
0 & m_{2}^{2} & 0 \\
0 & 0 & m_{3}^{2}
\end{array}\right) V^{\dagger}+\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right]
$$

Diagonalize the effective Hamiltonian in matter
$\tilde{V}^{\dagger} \mathcal{H}_{\mathrm{m}} \tilde{V}=\frac{1}{2 E}\left(\begin{array}{ccc}\widetilde{m}_{1}^{2} & 0 & 0 \\ 0 & \widetilde{m}_{2}^{2} & 0 \\ 0 & 0 & \widetilde{m}_{3}^{2}\end{array}\right) \quad \begin{aligned} & \text { Parametrize } \tilde{V} \text { in the standard way by three mixing } \\ & \text { angles } \widetilde{\boldsymbol{\theta}}_{i j} \text { and one CP-violating phase } \widetilde{\delta} \text { in matter }\end{aligned}$
Oscillation probabilities in matter of a constant density

$$
\begin{aligned}
\tilde{P}\left(v_{\alpha} \rightarrow v_{\beta}\right)=\delta_{\alpha \beta} & -4 \sum_{i<j}^{3} \operatorname{Re}\left[\tilde{V}_{\alpha i} \tilde{V}_{\beta j} \tilde{V}_{\alpha j}^{*} \tilde{V}_{\beta i}^{*}\right] \sin ^{2} \frac{\Delta \tilde{m}_{j i}^{2} L}{4 E} \\
& +8 \tilde{\mathcal{J}} \sum_{\gamma} \varepsilon_{\alpha \beta \gamma} \sin \frac{\Delta \widetilde{m}_{21}^{2} L}{4 E} \sin \frac{\Delta \widetilde{m}_{32}^{2} L}{4 E} \sin \frac{\Delta \widetilde{m}_{31}^{2} L}{4 E}
\end{aligned}
$$

The oscillation probabilities for antineutrinos can be obtained by $V \Rightarrow V^{*}$ and $A \Rightarrow-A$

For the MSW resonance to happen
$\theta \in\left[0, \frac{\pi}{4}\right]$

$\Delta m_{21}^{2}>0$$\Longleftrightarrow$| $\theta \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ |
| :--- |
| $\Delta m_{21}^{2}<\mathbf{0}$ |

$\theta_{12}=34^{\circ}$
Normal neutrino mass ordering

For high-energy ${ }^{8} \mathbf{B}$ neutrinos
at production $r=0$
$\binom{\left|\widetilde{v}_{1}(\mathbf{0})\right\rangle}{\left|\widetilde{v}_{2}(\mathbf{0})\right\rangle}=\left(\begin{array}{cc}\boldsymbol{c}_{\widehat{\theta}} & -\boldsymbol{s}_{\widehat{\theta}} \\ \boldsymbol{s}_{\widehat{\theta}} & \boldsymbol{c}_{\widehat{\theta}}\end{array}\right)\binom{\left|\boldsymbol{v}_{e}(\mathbf{0})\right\rangle}{\left|\boldsymbol{v}_{\mu}(\mathbf{0})\right\rangle}$
adiabatic evolution

$$
\binom{\left|\widetilde{v}_{1}(R)\right\rangle}{\left|\widetilde{v}_{2}(R)\right\rangle}=\left(\begin{array}{ll}
\mathbf{1} & \mathbf{0} \\
\mathbf{0} & 1
\end{array}\right)\binom{\left|\widetilde{v}_{1}(\mathbf{0})\right\rangle}{\left|\widetilde{v}_{2}(\mathbf{0})\right\rangle}
$$

on the solar surface $r=R$
$\binom{\left|\boldsymbol{v}_{\boldsymbol{e}}(\boldsymbol{R})\right\rangle}{\left|\boldsymbol{v}_{\boldsymbol{\mu}}(\boldsymbol{R})\right\rangle}=\left(\begin{array}{cc}\boldsymbol{c}_{\boldsymbol{\theta}} & \boldsymbol{s}_{\theta} \\ -\boldsymbol{s}_{\theta} & \boldsymbol{c}_{\theta}\end{array}\right)\left(\begin{array}{l}\boldsymbol{R} \\ \left.\widetilde{\boldsymbol{v}}_{1}(\boldsymbol{R})\right\rangle \\ \left|\widetilde{\boldsymbol{v}}_{2}(\boldsymbol{R})\right\rangle\end{array}\right)$
survival probability
$P_{e e}=c_{\vec{\theta}}^{2} c_{\theta}^{2}+s_{\vec{\theta}}^{2} s_{\theta}^{2} \rightarrow \sin ^{2} \theta$
$\widehat{\boldsymbol{\theta}} \rightarrow \pi / 2 \quad$ as $A \gg \Delta m^{2}$
For low-energy ${ }^{7} \mathrm{Be}$ neutrinos

$$
P_{e e} \approx 1-\frac{1}{2} \sin ^{2} 2 \theta
$$

Oscillations in vacuum

Standard Parametrization of the PMNS Matrix

$$
\begin{gathered}
V=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
e^{i \rho} & 0 & 0 \\
0 & e^{i \sigma} & 0 \\
0 & 0 & 1
\end{array}\right) \\
\boldsymbol{\theta}_{23} \sim 45^{\circ} \\
\left|\Delta m_{32}^{2}\right| \sim 2.5 \times 10^{-3} \mathrm{eV}^{2}
\end{gathered} \quad \boldsymbol{\theta}_{13} \sim \mathbf{9}^{\circ} \quad \begin{aligned}
& \boldsymbol{\theta}_{12} \sim 34^{\circ}
\end{aligned} \quad \mathbf{0 v 2 \beta , \text { LNV? }} \begin{gathered}
\text { Atmospheric, } \\
\text { LBL accelerator }
\end{gathered} \quad \begin{gathered}
\text { Reactor, }
\end{gathered}
$$

Quarks vs. Leptons: A big puzzle of fermion flavor mixings
CKM
$|U|=$
Hierarchy!

PMNS

$$
|V|=\left(\begin{array}{lll}
\square & \square & \ddots \\
\square & \square & \square
\end{array}\right)
$$

Approximate $\boldsymbol{\mu}$ - τ symmetry?

Matter Effects: Short-distance Propagation

 in matter
E.Kh. Akhmedov ${ }^{1}$

Vacuum $P\left(v_{e} \rightarrow v_{\mu}\right)=\sin ^{2} 2 \theta \sin ^{2} \frac{\Delta m_{21}^{2} L}{4 E} \quad \square \quad P\left(v_{e} \rightarrow v_{\mu}\right)=\sin ^{2} 2 \theta\left[\frac{\Delta m_{21}^{2} L}{4 E}\right]^{2}$
Matter $\widetilde{P}\left(v_{e} \rightarrow v_{\mu}\right)=\sin ^{2} 2 \widetilde{\theta} \sin ^{2} \frac{\Delta \widetilde{m}_{21}^{2} L}{4 E}$

$$
\widetilde{P}\left(v_{e} \rightarrow v_{\mu}\right)=\sin ^{2} 2 \theta\left[\frac{\Delta m_{21}^{2} L}{4 E}\right]^{2}
$$

$\Delta \widetilde{m}_{21}^{2}=\sqrt{\left(\Delta m_{21}^{2} c_{2 \theta}-A\right)^{2}+\left(\Delta m_{21}^{2} s_{2 \theta}\right)^{2}}$
$\sin 2 \widetilde{\theta}=\frac{\Delta m_{21}^{2}}{\Delta \widetilde{m}_{21}^{2}} \sin 2 \theta \quad$ Useful relations

In the limit of a short distance, or more precisely a small oscillation phase, the matter effects die out more rapidly than the oscillation effects themselves!!!

Look again at the Schrödinger-like equation for the flavor evolution

$$
i \frac{\mathrm{~d}}{\mathrm{~d} r}\binom{\left|v_{e}(r)\right\rangle}{\left|v_{\mu}(r)\right\rangle}=\frac{1}{4 E}\left(\begin{array}{cc}
A-\Delta m_{21}^{2} c_{2 \theta} & \Delta m_{21}^{2} s_{2 \theta} \\
\Delta m_{21}^{2} s_{2 \theta} & \Delta m_{21}^{2} c_{2 \theta}-A
\end{array}\right)\binom{\left|v_{e}(r)\right\rangle}{\left|v_{\mu}(r)\right\rangle}
$$

In the limit $r=L$ is small, the perturbation theory is applicable, so one has

$$
\left|v_{\mu}(L)\right\rangle=-i \frac{\Delta m_{21}^{2} L}{4 E} s_{2 \theta}\left|v_{e}(0)\right\rangle \quad \longrightarrow \widetilde{P}\left(v_{e} \rightarrow v_{\mu}\right)=\sin ^{2} 2 \theta\left[\frac{\Delta m_{21}^{2} L}{4 E}\right]^{2}
$$

The main reasons for the previous observation are

- The limit for the perturbation theory works well
- The matter term A appears in the diagonal places
- The initial state is a pure flavor eigenstate

To have large matter effects, take the initial state to not be a pure flavor state

How can we produce a neutrino state that is a coherent superposition of flavor eigenstates?
> Mass eigenstates are coherent superposition of flavor eigenstates
> Flavor eigenstates that propagate first in vacuum then enter into matter

Daytime at Super-Kamiokande
v_{2}
SK

$$
P_{2 e} \approx\left|U_{e 2}\right|^{2}=\sin ^{2} \theta_{12}
$$

Sun

Nighttime at Super-Kamiokande probability?

Earth

$$
\widetilde{P}_{2 e} \equiv P\left(v_{2} \rightarrow v_{e}\right)
$$

$$
v_{2}
$$

Now neutrinos traverse the Earth matter
How to calculate this

Earth

Two-flavor approximation and a constant matter density

$$
i \frac{\mathbf{d}}{\mathbf{d} r}\binom{\left|v_{e}(r)\right\rangle}{\left|v_{\mu}(r)\right\rangle}=\frac{\mathbf{1}}{4 E}\left[\begin{array}{cc}
\left.\boldsymbol{U}\left(\begin{array}{cc}
-\Delta m_{21}^{2} & 0 \\
0 & +\Delta m_{21}^{2}
\end{array}\right) U^{\dagger}+\left(\begin{array}{cc}
A & 0 \\
\mathbf{0} & -A
\end{array}\right)\right]\binom{\left|v_{e}(r)\right\rangle}{\left|v_{\mu}(r)\right\rangle}
\end{array}\right.
$$

Transform into the vacuum-mass basis

$$
U \equiv\left(\begin{array}{cc}
c_{\theta} & s_{\theta} \\
-s_{\theta} & c_{\theta}
\end{array}\right)
$$

$$
i \frac{\mathrm{~d}}{\mathrm{~d} r}\binom{\left|v_{1}(r)\right\rangle}{\left|v_{2}(r)\right\rangle}=\frac{1}{4 E}\left[\left(\begin{array}{cc}
-\Delta m_{21}^{2} & 0 \\
0 & +\Delta m_{21}^{2}
\end{array}\right)+U^{\dagger}\left(\begin{array}{cc}
A & 0 \\
0 & -A
\end{array}\right) U\right]\binom{\left|v_{1}(r)\right\rangle}{\left|v_{2}(r)\right\rangle}
$$

which describes how the vacuum mass eigenstates evolve in matter

$$
\begin{aligned}
& \widetilde{\mathscr{H}}_{\mathrm{m}}=\frac{1}{4 E}\left[\left(\begin{array}{cc}
-\Delta m_{21}^{2} & 0 \\
0 & +\Delta m_{21}^{2}
\end{array}\right)+U^{\dagger}\left(\begin{array}{cc}
A & 0 \\
0 & -A
\end{array}\right) U\right. \\
&= \frac{1}{4 E}\left(\begin{array}{cc}
A c_{2 \theta}-\Delta m_{21}^{2} & A s_{2 \theta} \\
A s_{2 \theta} & \Delta m_{21}^{2}-A c_{2 \theta}
\end{array}\right) \\
&=\frac{1}{4 E}\left[A s_{2 \theta} \cdot \sigma_{1}+\left(A c_{2 \theta}-\Delta m_{21}^{2}\right) \cdot \sigma_{3}\right] \\
& \text { Pauli matrices }
\end{aligned} \quad \begin{aligned}
& \exp (-i \vec{a} \cdot \vec{\sigma} L) \\
& =\cos (a L)-i \frac{\vec{a} \cdot \vec{\sigma}}{a} \sin (a L) \\
& \vec{a}=\frac{1}{4 E}\left(A s_{2 \theta}, 0, A c_{2 \theta}-\Delta m_{21}^{2}\right) \\
& a=\frac{1}{4 E} \sqrt{\left(A s_{2 \theta}\right)^{2}+\left(A c_{2 \theta}-\Delta m_{21}^{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left|v_{i}(L)\right\rangle=\left[\cos (a L)-i \frac{\vec{a} \cdot \vec{\sigma}}{a} \sin (a L)\right]\left|v_{i}(0)\right\rangle \\
& \widetilde{A}_{2 e} \equiv A\left(v_{2} \rightarrow v_{e}\right)=\left\langle v_{e}\right| \mathcal{T}(L)\left|v_{2}(0)\right\rangle \\
& \text { in the chosen basis } \\
& \left|\boldsymbol{v}_{\boldsymbol{e}}\right\rangle=\boldsymbol{U}^{\dagger}\binom{\mathbf{1}}{\mathbf{0}}=\binom{\boldsymbol{c}_{\boldsymbol{\theta}}}{\boldsymbol{s}_{\boldsymbol{\theta}}} \\
& \left|v_{2}\right\rangle=\binom{0}{1} \\
& =\left(\begin{array}{ll}
c_{\theta} & s_{\theta}
\end{array}\right)\left[\cos (a L)-i \frac{\vec{a} \cdot \vec{\sigma}}{a} \sin (a L)\right]\binom{0}{1} \\
& =s_{\theta}\left[\cos (a L)-\frac{i}{4 E a}\left(A+\Delta m_{21}^{2}\right) \sin (a L)\right] \\
& \widetilde{P}_{2 e} \equiv\left|\widetilde{A}_{2 e}\right|^{2}=\sin ^{2} \theta+\frac{A \Delta m_{21}^{2}}{16 E^{2} a^{2}} \sin ^{2} 2 \theta \sin ^{2}(a L) \quad A \text { or } L \rightarrow 0 \quad P_{2 e}=\sin ^{2} \theta_{12} \\
& a=\frac{1}{4 E} \sqrt{\left(A s_{2 \theta}\right)^{2}+\left(A c_{2 \theta}-\Delta m_{21}^{2}\right)^{2}} \\
& \begin{array}{c}
\frac{\Delta \widetilde{m}_{21}^{2}}{4 E} \\
\frac{1}{4 E} \sqrt{\left(\Delta m_{21}^{2} s_{2 \theta}\right)^{2}+\left(A-\Delta m_{21}^{2} c_{2 \theta}\right)^{2}}
\end{array} \\
& a=\frac{1}{4 E} \sqrt{A^{2}-2 \Delta m_{21}^{2} A c_{2 \theta}+\left(\Delta m_{21}^{2}\right)^{2}}
\end{aligned}
$$

The difference in the probability for $\left|v_{2}\right\rangle$ to be detected as $\left|v_{e}\right\rangle$

$$
\widetilde{P}_{2 e}-P_{2 e}=\frac{A \Delta m_{21}^{2}}{\left(\Delta \widetilde{m}_{21}^{2}\right)^{2}} \sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta \widetilde{m}_{21}^{2} L}{4 E}\right)
$$

Now we consider the production of ${ }^{8} \mathrm{~B}$ neutrinos and their flavor conversion inside the Sun (see the references Carlson, PRD, 1986; Guth/Randall/Serna, JHEP, 1999; Blennow/Ohlsson/Snellman, PRD, 2004)

Daytime survival probability

$$
P_{S}=\sum_{i=1}^{n} k_{i}\left|\left\langle\nu_{e} \mid \nu_{i}\right\rangle\right|^{2}=\sum_{i=1}^{n} k_{i}\left|U_{e i}\right|^{2} \quad \sum_{i=1}^{n} k_{i}=1 \quad \mathbf{k}_{\mathbf{i}} \text { the fraction of }\left|\boldsymbol{v}_{\boldsymbol{i}}\right\rangle
$$

Nighttime survival probability

$$
P_{S E}=\sum_{i=1}^{n} k_{i}\left|\left\langle\nu_{e} \mid \tilde{\nu}_{i}\right\rangle\right|^{2} \quad P_{i e}=\left|\left\langle\nu_{e} \mid \tilde{\nu}_{i}\right\rangle\right|^{2} \quad \sum_{i=1}^{n} P_{i e}=1
$$

Two-flavor approximation $P_{S}=\left(1-k_{2}\right) \cos ^{2} \theta+k_{2} \sin ^{2} \theta=\cos ^{2} \theta-k_{2} \cos (2 \theta)$

$$
P_{S E}=P_{S}+\frac{1-2 P_{S}}{\cos (2 \theta)}\left(P_{2 e}-\sin ^{2} \theta\right) \quad \begin{aligned}
& \text { One has to calculate } \mathbf{k}_{2} \text { and } \mathbf{P}_{2 \mathrm{e}} \text { for } \\
& \text { solar neutrinos and the Earth matter }
\end{aligned}
$$

Neutrino production

$$
\left|\nu_{e}\right\rangle=\cos \hat{\theta}\left|\nu_{M, 1}\right\rangle+\sin \hat{\theta}\left|\nu_{M, 2}\right\rangle
$$

Flavor mixing angle at the production point

Neutrino fraction

$$
k_{i}=\int_{0}^{R_{\odot}} \mathrm{d} r f(r)\left(\cos ^{2} \hat{\theta}(r) P_{1 i}^{s}+\sin ^{2} \hat{\theta}(r) \widehat{P_{2 i}^{s}}\right.
$$

Normalized distribution function for neutrino production

Transitional probability from i to j

$$
P_{12}^{s}=P_{21}^{s}=P_{\mathrm{jump}}
$$

Non-adiabatic case
$k_{1}=\frac{1+D_{2 \nu}}{2}, k_{2}=\frac{1-D_{2 \nu}}{2} \quad D_{2 \nu}=\int_{0}^{R_{\odot}} \mathrm{d} r f(r) \cos (2 \hat{\theta}(r))\left(1-2 P_{\text {jump }}\right)$
For the Sun, it is easy to estimate the adiabaticity parameter ($\mathrm{E}=\mathbf{1 0} \mathbf{~ M e V}$)
$\gamma_{\mathrm{res}} \simeq 2.6 \cdot 10^{3}$
$P_{\text {jump }} \sim 10^{-1700}$

$$
P_{S}=\frac{1}{2}\left[\left(1+D_{2 \nu}\right) \cos ^{2} \theta+\left(1-D_{2 \nu}\right) \sin ^{2} \theta\right]=\frac{1+D_{2 \nu} \cos (2 \theta)}{2}
$$

Final results for two-flavor mixing

$$
P_{S E}-P_{S}=-D_{2 v} \frac{A \Delta m_{21}^{2}}{\left(\Delta \widetilde{m}_{21}^{2}\right)^{2}} \sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta \widetilde{m}_{21}^{2} L}{4 E}\right)
$$

$$
D_{2 \nu}=\int_{0}^{R_{\odot}} \mathrm{d} r f(r \underbrace{\cos (2 \hat{\theta}(r)}_{\text {Negative in the production region of }{ }^{\mathbf{8}} \mathbf{B}})\left(1-2 P_{\mathrm{jump}}\right) \quad \mathbf{P}_{\mathbf{S E}}-\mathbf{P}_{\mathbf{S}}>\mathbf{0} \text { regeneration effects }
$$

Final results for three-flavor mixing

$$
P_{S E}-P_{S}=-c_{13}^{6} D_{3 v} \frac{A \Delta m_{21}^{2}}{\left(\Delta \widetilde{m}_{21}^{2}\right)^{2}} \sin ^{2} 2 \theta \sin ^{2}\left(\frac{\Delta \widetilde{m}_{21}^{2} L}{4 E}\right)
$$

$$
D_{3 \nu}=\int_{0}^{R_{\odot}} \mathrm{d} r f(r) \cos \left(2 \hat{\theta}_{12}(r)\right)\left(1-2 P_{\mathrm{jump}}\right) \quad \text { Matter potential multiplied by } \boldsymbol{c}_{\mathbf{1 3}}^{\mathbf{2}}
$$

Day-Night Asymmetry

$$
A_{\mathrm{DN}} \equiv-2 \frac{P_{S E}-P_{S}}{P_{S E}+P_{S}}
$$

This can be observed by comparing between the elastic neutrino-electron scattering events in the daytime and those at night.

$A_{\mathrm{DN}}^{\mathrm{fit}, \mathrm{SK}}=(-3.3 \pm 1.0$ (stat.) ± 0.5 (syst.) $) \% \quad$ Observed at the $\mathbf{3 \sigma}$ level
Question: is it possible to observe lunar matter effects on solar neutrinos when the solar eclipses take place?
Expectation: According to the previous discussions and Akhmedov's work, even if neutrinos are traveling in the Moon with a short distance, the matter effects should not be that suppressed.

Solar eclipses

Before reaching the Earth, solar v's may first traverse the Moon during the solar eclipses

The Moon

Mean radius: 1737.1 km (0.273 of Earth's)
Mean density: $3.344 \mathrm{~g} / \mathrm{cm}^{3}$ (0.606 of Earth's)

Formulation:

Consider the incoherent mass states, they enter into the lunar matter and then propagate in vacuum for a distance L, finally reach the Earth

$$
P_{\alpha \beta} \equiv P\left(v_{\alpha} \rightarrow v_{\beta}\right) \quad P_{\alpha \beta}=\sum_{i=1}^{3} k_{i}^{\alpha}\left|U_{\beta i}\right|^{2} \quad k_{1}^{\alpha}+k_{2}^{\alpha}+k_{3}^{\alpha}=1
$$

Two scenarios:

- The distance L between the Moon and the Earth is very long such that the coherence of neutrino mass states is lost before reaching the Earth

$$
\widehat{P}_{\alpha \beta}^{\mathrm{dec}}=\sum_{i=1}^{3} \sum_{j=1}^{3} k_{i}^{\alpha} P\left(v_{i} \rightarrow v_{j}^{\prime}\right)\left|U_{\beta j}\right|^{2}
$$

$$
P\left(v_{i} \rightarrow v_{j}^{\prime}\right) \equiv P_{i j}
$$

The probability for $\left|v_{i}\right\rangle \rightarrow\left|v_{j}^{\prime}\right\rangle$
after passing through the Moon
The coherence of neutrino mass states is kept until they reach the Earth

$$
\widehat{P}_{\alpha \beta}^{\mathrm{coh}}=\sum_{i=1}^{3} k_{i}^{\alpha} P\left(v_{i} \rightarrow v_{\beta}\right)
$$

$$
P\left(v_{i} \rightarrow v_{\beta}\right) \equiv P_{i \beta}
$$

The probability for $\left|v_{i}\right\rangle \rightarrow\left|v_{\beta}\right\rangle$

Connection

$$
\begin{aligned}
& \widehat{P}_{\alpha \beta}^{\text {coh }}=\sum_{i=1}^{3} \sum_{i=1}^{3} k_{i}^{\alpha}\left|\left\langle\nu_{\beta} \mid \nu_{j}^{\prime}\right\rangle \cdot \exp \left[-\mathrm{i} m_{j}^{2} L /(2 E)\right] \cdot\left\langle\nu_{j}^{\prime} \mid v_{i}\right\rangle\right|^{2}=\widehat{P}_{\alpha \beta}^{\mathrm{dec}}+\widehat{I}_{\alpha \beta} \\
& \widehat{I}_{\alpha \beta}=\sum_{i=1}^{3} k_{i}^{\alpha} \sum_{j>k} 2 \operatorname{Re}\left\{U_{\beta j} U_{\beta k}^{*} A_{i j} A_{i k}^{*} \exp \left[-\mathrm{i} \Delta m_{j k}^{2} L /(2 E)\right]\right\}
\end{aligned}
$$

The amplitude for

$$
\begin{aligned}
& \left|v_{i}\right\rangle \rightarrow\left|v_{j}^{\prime}\right\rangle \\
& A_{i j} \equiv\left\langle v_{j}^{\prime} \mid v_{i}\right\rangle
\end{aligned}
$$

Evolution in the vacuum mass basis

$V^{\dagger} H_{\mathrm{m}} V=\operatorname{diag}\left\{\tilde{m}_{1}^{2}, \tilde{m}_{2}^{2}, \tilde{m}_{3}^{2}\right\} /(2 E) \quad H_{\mathrm{m}}=\frac{1}{2 E}\left[\left(\begin{array}{ccc}m_{1}^{2} & 0 & 0 \\ 0 & m_{2}^{2} & 0 \\ 0 & 0 & m_{3}^{2}\end{array}\right)+U^{\dagger}\left(\begin{array}{ccc}A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) U\right]$

Mass eigenvalues

$\tilde{m}_{1}^{2}=m_{1}^{2}+\frac{1}{3} x-\frac{1}{3} \sqrt{x^{2}-3 y}\left[z+\sqrt{3\left(1-z^{2}\right)}\right]$	$x=\Delta m_{21}^{2}+\Delta m_{31}^{2}+A$
$\tilde{m}_{2}^{2}=m_{1}^{2}+\frac{1}{3} x-\frac{1}{3} \sqrt{x^{2}-3 y}\left[z-\sqrt{3\left(1-z^{2}\right)}\right]$	$y=\Delta m_{21}^{2} \Delta m_{31}^{2}+A\left[\Delta m_{21}^{2}\left(1-\left\|U_{e 2}\right\|^{2}\right)+\Delta m_{31}^{2}\left(1-\left\|U_{e 3}\right\|^{2}\right)\right]$
$\tilde{m}_{3}^{2}=m_{1}^{2}+\frac{1}{3} x+\frac{2}{3} z \sqrt{x^{2}-3 y}$	$z=\cos \left[\frac{1}{3} \arccos \frac{2 x^{3}-9 x y+27 A \Delta m_{21}^{2} \Delta m_{31}^{2}\left\|U_{e 1}\right\|^{2}}{2\left(x^{2}-3 y\right)^{3 / 2}}\right]$

Unitary matrix

$V_{i i}=\frac{N_{i}}{D_{i}}, \quad V_{i j}=\frac{A}{D_{j}}\left(\tilde{m}_{j}^{2}-m_{k}^{2}\right) U_{e i}^{*} U_{e j}$

$$
A_{i j}=\left\langle v_{j}^{\prime} \mid v_{i}\right\rangle=\sum_{k=1}^{3} V_{j k} V_{i k}^{*} \exp \left[-\mathrm{i} \tilde{m}_{k}^{2} d_{\mathrm{M}} /(2 E)\right]
$$

$D_{i}^{2}=N_{i}^{2}+A^{2}\left|U_{e i}\right|^{2}\left[\left(\tilde{m}_{i}^{2}-m_{j}^{2}\right)^{2}\left|U_{e k}\right|^{2}+\left(\tilde{m}_{i}^{2}-m_{k}^{2}\right)^{2}\left|U_{e j}\right|^{2}\right]$

Transition amplitude

$N_{i}=\left(\tilde{m}_{i}^{2}-m_{j}^{2}\right)\left(\tilde{m}_{i}^{2}-m_{k}^{2}\right)-A\left[\left(\tilde{m}_{i}^{2}-m_{j}^{2}\right)\left|U_{e k}\right|^{2}+\left(\tilde{m}_{i}^{2}-m_{k}^{2}\right)\left|U_{e j}\right|^{2}\right]$

$$
\left|v_{i}\right\rangle \rightarrow\left|v_{j}^{\prime}\right\rangle
$$

Sun
Moon

Earth

Oscillation Length

$$
L_{\mathrm{osc}} \sim L_{\mathrm{osc}}^{21} \equiv \frac{4 \pi E}{\Delta m_{21}^{2}} \approx 330 \mathrm{~km}\left(\frac{E}{10 \mathrm{MeV}}\right) \cdot\left(\frac{7.5 \times 10^{-5} \mathrm{eV}^{2}}{\Delta m_{21}^{2}}\right) \lll L_{\mathrm{ME}} \approx 3.84 \times 10^{5} \mathrm{~km}
$$

Before arriving in the SK detector, neutrinos experience many cycles of oscillations and thus the situation is equivalent to decoherence

$$
P_{\mathrm{S}}^{\mathrm{M}}=\sum_{i=1}^{3} \sum_{j=1}^{3} k_{i}^{e} P_{i j}\left|U_{e j}\right|^{2} \quad P_{\mathrm{S}}^{\mathrm{M}}-P_{\mathrm{S}}=\left(k_{2}^{e}-k_{1}^{e}\right)\left(\left|U_{e 1}\right|^{2}-\left|U_{e 2}\right|^{2}\right) P_{12}
$$

The calculations of k factors are the same as for the DN asymmetry

Matter density

Matter term

$\rho_{\mathrm{M}} \approx 3 \mathrm{~g} \mathrm{~cm}^{-3}$
Electron fraction

$$
Y_{\mathrm{M}}^{e} \approx 0.5
$$

In the limit $A \ll \Delta m_{21}^{2} \ll \Delta m_{31}^{2}$
$V \approx\left(\begin{array}{ccc}1 & A U_{e 1}^{*} U_{e 2} / \Delta m_{21}^{2} & A U_{e 1}^{*} U_{e \beta} / \Delta m_{31}^{2} \\ A U_{e l} U_{e l}^{*} / \Delta m_{21}^{2} & 1 & A U_{e 2}^{*} U_{e c} / \Delta m_{32}^{2} \\ A U_{e 1} U_{e 3}^{*} / \Delta m_{31}^{2} & A U_{e 2}^{*} U_{e 3}^{*} / \Delta m_{32}^{2} & 1\end{array}\right)$
Extremely difficult to observe solar eclipses via neutrinos

$$
\begin{aligned}
& A \approx 2.28 \times 10^{-6} \mathrm{eV}^{2} \cdot[E /(10 \mathrm{MeV})] \\
& A / \Delta m_{21}^{2} \approx 0.03[E /(10 \mathrm{MeV})]
\end{aligned}
$$

Summary

- Matter effects are very important for neutrino oscillations. We investigate the possibility to observe solar eclipses in the neutrino light. In principle this is possible due to the lunar matter effects, similar to the Earth matter effects on solar neutrinos
- It turns out that the lunar matter effects are smaller by a factor of 1.2\% compared to the ordinary day-night asymmetry
- The reason for such a suppression is due to the loss of coherence during the propagation between the Moon and the Earth
- We set up a general formalism to calculate the impact of any astrophysical objects in the way of neutrino propagation. Other examples include the UHE neutrinos and solar atmospheric neutrinos

Thanks for your attention!

