

The 27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions 14–19 May Palazzo del Cinema Lido di Venezia, Italy

Quark Matter 2018 overview

What I've learnt in this conference

Chen Lin

IoPP, CCNU, Wuhan

May 31, 2018

Introduction

Theme this year: small systems

- (3) Correlation and Fluctuation
- (2) Electromagnetic and Weak Probes
- (3) Initial State Physics and Approach to Equilibrium
- (3) Collectivity in Small Systems
- (3) Quarkonia
- (5) Jet Modification and High-p_T hadrons
- (2) Future Facilities, Upgrades and Instrumentation
- (2) QCD at High Temperature
- (4) Collective Dynamics
- (3) Chirality, Vorticity and Polarization Effects
- (1) High Baryon Density and Astrophysics
- (1) Thermodynamics and Hadron Chemistry
- (3) Open Heavy Flavour
- (2) New Theoretical Developments
- (3) Phase Diagram and Search for the Critical Point

A vast amount of information

- Il plenary session
- 34 plenary talks
- 40 parallel session
- 230 parallel talks
- more than 400 posters

Focus on:

- New Experimental data and measurements
- New theoretical analysis and development
- new puzzles and problems

Introduction

Theme this year: small systems

- (3) Correlation and Fluctuation
- (2) Electromagnetic and Weak Probes
- (3) Initial State Physics and Approach to Equilibrium
- (3) Collectivity in Small Systems
- (3) Quarkonia
- (5) Jet Modification and High-p_T hadrons
- (2) Future Facilities, Upgrades and Instrumentation
- (2) QCD at High Temperature
- (4) Collective Dynamics
- (3) Chirality, Vorticity and Polarization Effects
- (1) High Baryon Density and Astrophysics
- (1) Thermodynamics and Hadron Chemistry
- (3) Open Heavy Flavour
- (2) New Theoretical Developments
- (3) Phase Diagram and Search for the Critical Point

A vast amount of information

- 11 plenary session
- 34 plenary talks
- 40 parallel session
- 230 parallel talks
- more than 400 posters

Focus on:

- New Experimental data and measurements
- New theoretical analysis and development
- new puzzles and problems

INITIAL STATE PHYSICS

Why Initial State Physics?

Understanding initial state fluctuations:

- transverse (sub-nucleonic) fluctuations \Rightarrow transverse flow anisotropy (IP-Glasma, Glauber, EKRT, \cdots)
- longitudinal fluctuation \Rightarrow rapidity decorrelation (AMPT, Scott McDonald, XiangYu, \cdots)
- pre-equilibrium dynamics ⇒ temporal evolution of the medium (multi-stage: field, kinetic, hydro)

Need to probe partonic distributions within the nucleon/nucleus. How?

- UPC via Light-by-Light, di-lepton, vector-meson and jet production. Probes gluon distribution at small-x, nuclear PDF (CNM).
- Forward/Backward scattering via pA/Ap or fixed-target. probe small/large-x gluon distribution, CNM effect.
- potential tool by the EIC.

ALICE Xe-Xe measurement

scale violation of charged multiplicity for different systems at similar N_{part} .

CMS Xe-Xe measurement

Per-participant $dN/d\eta$ at mid-rapidity is driven by collision geometry, not system size.

ALICE J/Ψ measurement

CCT

Exclusive J/ ψ photoproduction in p-Pb

model consistent with data with or without saturation effect.

LHCb J/Ψ measurement

analysis result

differential coherent cross section

LHCb preliminary

- $\sigma = 5.27 \pm 0.21 \pm 0.49 \pm 0.68\,{\rm mb}$
 - The analysis is repeated in bins of half unit rapidity y_{J/ψ}
 - Uncertainties for statistics, systematic and luminosity are of comparable magnitude
 - The LHCb acceptance is interesting to discriminate between the models

LHCb-CONF-2018-003

Albert Bursch

large rapidity acceptance, coherent collision.

CMS $\Upsilon(1S)$ measurement

Excl. Y(1S) photoproduction cross section vs W

(a) 10⁴

 10^{2}

 \rightarrow Y(1S) p

ຼ[ໍ] 10⁸

CMS Preliminary

ZEUS 2009 (e-p)

ZEUS 1998 (e-p)

LHCb (p-p, 7,8 TeV)

CMS (pPb, 5.02 TeV

H1 2000 (e-p)

$$\frac{\mathrm{d}\sigma_{\mathrm{Y(nS)}}}{\mathrm{d}y} \mathcal{B}_{\mathrm{Y(nS)}\to\mu^+\mu^-} = \frac{N^{\mathrm{corr}}_{\mathrm{Y(nS)}}}{\mathcal{L}\times\Delta y}$$
$$W^2_{\gamma\mathrm{p}} = 2E_{\mathrm{p}}m_{\mathrm{Y}}\exp(\pm y)$$

- → The differential Y(1S) cross-section extracted by correcting for branching ratio, feed-down, Y(1S) fraction
- → The cross-section as a function of W_{yp} is estimated by $\sigma_{yp \to Y(1S)p} = \frac{1}{20} \frac{d\sigma_{Y(1S)}}{dx}$

the CMS data gives, $\delta = 0.96 \pm 0.43$

A = 655 ± 196 pb

```
ZEUS: δ = 1.2 ± 0.8
Phys.Lett. B680 (2009) 4
```


243< W <312 GeV

171 c W ... <243 GeV 312 c W ... <826 GeV

Ruchi Chudasama (BARC, Mumbai)

compatible with HERA data and pQCD predictions.

CMS-FSO-13-009

pPb 32.6 nb⁻¹ (5.02 TeV)

- flPsat

- IIM-BG

- IIM-LCG

---- bCGC-BG

---- bCGC-LCC

JMRT-NLO

Fit CMS: δ=0.96±0.43
 Fit HERA+CMS+LHCb:

δ=0 76±0 14

Chen Lin (IoPP, CCNU, Wuhan)

ATLAS Light-by-Light measurement

UPC MEASUREMENTS LIGHT-BY-LIGHT SCATTERING Events / 0.005 14 Data, 480 ub⁻¹ ATLAS m→m MC Pb+Pb vs_{NN} = 5.02 TeV ry→e*e* MC 12 CEP YY MC 10 Signal selection no Aco requirement 6 4 0.01 0.02 0.03 0.04 0.05 0.06 yy acoplanarity $\sigma_{\text{fid}} = 70 \pm 24 \text{ (stat.)}$ nature ARTICLES physics ±17(syst) nb PUBLISHED ONLINE: 14 AUGUST 2017 | DOI: 10.1038/NPHYS4208 4.4σ significance Evidence for light-by-light scattering in heavy-ion observed collisions with the ATLAS detector at the LHC 3.8 expected ATLAS Collaboration[†]

strong QED proof.

CMS Light-by-Light measurement

strong QED proof.

ATLAS dimuon measurement

clear broadening but no sign of momentum imbalance.

CMS Forward/Backward dijet measurement

suppression of large-x gluon PDF (EMC).

PHENIX RpA measurements for p-Au and p-Al

Backward (A-going, large-x) enhancement scale with N_{part} .

IP-Glasma 3+1D generalization

provides 3+1D initial condition with transverse dynamics and longitudinal fluctuations.

CGC+PYTHIA incorporation

CGC meets Lund String fragmentation of PYTHIA

CGC + PYTHIA : A new approach to simulate p+p & p+A collisions

- 1) Output distribution of Gluons from CGC based IP-Glasma model
- 2) Sample gluons in momentum space
- 3) Connect the gluons close in phase space to color neutral strings
- Input to PYTHIA and fragment into final particles

PYTHIA (realistic mechanism of hadronization) \rightarrow partonic correlations from initial state dynamics \rightarrow correlated production of final-state particles

P.Tribedy, Quark Matter 2018, Venice, Italy

Description of particle yields, long range correlations, collective effect.

ELECTROMAGNETIC AND WEAK PROBES

Why Electro-Weak Probes?

- prompt photon (γ) probes the medium unaffected, use as calibration for jets.
- thermal photon, decayed di-electrons records time evolution of the medium, gives information about the system temperature.
- W- and Z-boson constrain nuclear parton distribution function in p-A collisions.

ALICE direct-photon measurement

no excess in thermal region, consistent with pQCD calculations.

ALICE direct-photon v₂

Direct Photon Yield and Flow

non-zero v_2 observed, late production time.

PHENIX direct-photon measurement

Direct Photon Connection Between Large and Small Systems

- > There seems to be another trend from small systems, different from that of large systems
- > Both trends suggest an "intersection region" or "intersection point"
- p+Au 0-5% data point shows a sign of existence of QGP small droplet

generalized scaling for direct photon production across energies and systems.

ALICE di-electron measurement

Central Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

cocktail of di-electron production consistent with simulation.

Fit to the invariant mass in centrality bins

5/31/2018 | Quark Matter 2018, Venice | Szymon Harabasz | 8

DARMSTADT

di-electron yield measurement for different sources of photon production.

CMS top quark measurement

first CMS observation for top quark in pPb, probe gluon nuclear distribution.

CMS W-boson measurement

W boson measurement agrees with existing quark nuclear PDFs, good with EPPS.

ALICE Electroweak boson measurement

- · Calculations with and without nPDF can reproduce the results
- As for the Z-boson results, more precision is needed to constrain nPDFs

W/Z production require more precision to constrain nuclear PDF.

Thermal photon study

Probing the dynamical plasma

Significant thermal photon at low collision energies using dynamically initialized hydro profile.

JET MODIFICATION AND HIGH-P_T HADRONS

Why Jets?

- R_{AA} smoking gun for QGP formation
- EM jets probes the coloured medium unaffected, calibrate away-side jet energy
- jet correlations $(\Delta \phi, x_J)$ probes medium effect and transport coefficient via broadening and energy-loss.
- jet fragmentation function medium response

ALICE R_{AA} measurement

New R_{AA} measurement for Xe-Xe and Pb-Pb (similar multiplicity) showing the effect of Cronin and suppression.

ATLAS R_{AA} measurement

 R_{AA} scales with $\langle N_{part} \rangle$ or $\langle N_{coll} \rangle$.

ATLAS R_{AA} measurement

 R_{AA} have no dependence on beam energy.

CMS R_{AA} measurement

measurement of R_{AA} showing agreement with model prediction from mid to high p_T .

CMS b-jet measurement

CMS b-jet measurement provide probe to final gluon splitting and removes soft gluon contribution.

ATLAS Jet-FF measurement

Soft and hard fragments are enhanced in AA compared to pp

ATLAS $x_{j\gamma}$ measurement

Direct comparisons to theory (no smearing)

unfolded $x_{j\gamma}$ distribution agree directly with unsmeared theoretical prediction.

STAR A_J measurement

STAR dijet measurement with centrality dependence.

Z-jet with Sherpa+LBT

Z-jet momentum asymmetry showing shift to small-x in the presence of a medium.

Dijet acoplanarity

Acoplanarity measurements could proof to be important in falsifying competing models.

Coherent/Incoherent jet energy loss

Non-monotonic p_T dependence favours coherent jet energy loss picture.

VLE in medium

- ullet The respective formation time is necessarily large: $t_{
 m f}\gtrsim L$
- An antenna with opening angle $\theta \gg \theta_c$ loses coherence in a time $t_{\rm coh} \ll L$

Vacuum like emissions in the medium could affect jet shape.

Release of JETSCAPE 1.0

The release of JETSCAPE 1.0.

Jet mass and shape with MARTINI

Recoil effect is important in describing jet mass and shape in MARTINI, which is included in JETSCAPE.

Using deep learning for q, g classification

Non-monotonic p_T dependence favours coherent jet energy loss picture.

ALICE R_{AA} puzzle (1)

R_{AA} in very peripheral collisions (1)

M. Knichel, Tue 10:20

Suppression of very peripheral AA collisions found.

Chen Lin (IoPP, CCNU, Wuhan)

ALICE R_{AA} puzzle (2)

R_{AA} at large p_T

- *R*_{AA} averaged over 8 < *p*_T < 20 GeV/*c* as function of centrality
- central collisions: strong quenching, reduced towards peripheral collisions
- minimal suppression (maximal R_{AA}) around 80%
- beyond 80% centrality: increased suppression because of selection bias

- R_{AA} never reaches unity
- HG-PYTHIA contains no nuclear effects
- \Rightarrow no need for jet quenching above 75% centrality
- \Rightarrow 5-10% effect for 50-60% central

Michael Linus Knichel

Quark Matter 2018 Venice - 15.05.2018

12 💽

suppression can be mimic by model without quenching.

ALICE QPG droplet puzzle

 \rightarrow v₂ is very pronounced in peripheral Pb-Pb and at similar multiplicities in p-Pb.

- → However, while no significant nuclear modification is observed in p-Pb, it is still significant in peripheral Pb-Pb. Is there a contradiction? Not necessarily!
- → In the current understanding, both phenomena arise from the same QCD interaction kernel.

26

small system R_{AA} consistent with unity, but have non-zero collectivity?

A fruitful conference

