



## Quark Matter 2018 Review

## **Open Heavy Flavour**

Caio A. G. Prado (博开友)

2018年5月31日, 武汉



### Introduction

What's new?

What looks exciting?

Conclusions

## Introduction





- Goal: understand the structure of universe (is it too much?)
- Heavy Ion Collisions
  - Experimental assessment of nuclear matter
  - Quark Gluon Plasma (everyone talks about it!)
- Collision systems (pp, pA, AA)
  - Not only baseline!
  - Different effects in play
  - Probes
    - Soft: low-p<sub>T</sub> light flavor particles
    - Hard: high-p<sub>T</sub> and heavy flavour particles

### Introduction Heavy quarks in heavy ion collisions





- The case for heavy flavor:
  - Pre-equilibrium production (hard scattering)
  - Long relaxation times
  - $m_Q > \Lambda_{QCD} \Rightarrow pQCD$  calculations
  - Strongly affected by QGP
  - Weakly affected by late time evolution
  - Hard fragmentation

- "Markers of the medium:"
  - Medium constituents
  - Transport coefficients
  - Mean free path



INFN

### Investigate QGP with heavy flavor probes





### Investigate different systems with heavy flavor probes



INFN



### Investigate different systems with heavy flavor probes





**(INFN** 

## Common observables



- Nuclear Modification Factor:  $R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{dN_{AA}/dp_T}{d\sigma_{pp}/dp_T}$ 
  - Compare AA with pp
  - Collision geometry:  $\langle T_{\rm AA} \rangle$
  - Energy loss, shadowing and low-p<sub>T</sub> flow bump
- Azimuthal anisotropy:  $E \frac{d^3 N}{dp^3} = \frac{1}{2\pi} \frac{d^2 N}{p_T dp_T dy} \left( 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi \psi_n)] \right)$ 
  - Initial spatial anisotropy
  - Heavy quark coupling with medium
  - Particle correlations
  - Event-by-event fluctuations



## What's new?

1.5

Au @ 200 GeV STAR Preliminar





¥2° H

ALICE 0-10% Pb-Pb,  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0-10%

NEW

0-10%

High p<sub>T</sub>: similar suppression at RHIC and LHC

) Low  $p_T: R_{AA}(D)_{RHIC} \lesssim R_{AA}(D)_{LHC} \rightarrow interplay of p_T shapes, radial flow, recombination$ E. Bruna (INFN-To) 31



18-05-31



INFN

#### NEW 0-10% 10-40% Significant charm v<sub>2</sub> at both RHIC STAR Au+Au √s<sub>NN</sub> = 200 GeV 0-10% • D<sup>0</sup> • A • D<sup>0</sup> STAR Au+Au Vs<sub>NN</sub> = 200 GeV and LHC △Ξ' □K<sub>e</sub> 43 10-40% □K<sub>a</sub> Not first extend 0.2 Non-flow estimation \_ 🕎 💆 0.2 v<sub>2</sub> decreases with increasing centrality Anisotropy Par 0.1 Low $p_T$ : $v_2$ (charged particles) $\geq v_2$ (D) High $p_T$ : $v_2$ (charged particles) $\approx v_2$ (D) -0.1 p, (GeV/c) p\_(GeV/c) \$<sup>∞ 0.25</sup> Min. bias Au+Au s<sub>NN</sub>=200GeV om charm decav PbPb Vs., = 5.02 TeV CMS h<sup>±</sup> PHENIX PRC92 034913 0.25 Prompt D<sup>0</sup>, |v| < 1.0</li> + Charged particle, Inl < 1.0 Calculations for prompt D Syst, from nonprompt D<sup>0</sup> 0.2 PHSD CUJET 3.0 Other syst. TAMU 0.15 0-10% 10-30% 30-50% ~ 0.05 $c \rightarrow e^{\pm}$ 0.05 -0.05 35 20 25 30 35 40 5 10 15 20 25 30 35 40 \*\*\*# 3.5 4 45 p\_ [GeV/c] p (GeV/c) p\_ (GeV/c) p\_(GeV/c)

### **Charm elliptic flow**

Caio Prado

R. Xiao (Wed 09:00), S. Singha (Wed 09:40), T. Hachiya (Tue 16:00) E. Bruna (INFN-To) arXiv: 1708.03497





### Positive v<sub>3</sub> for HF !

R. Xiao (Wed 09:00), Q. Hu (Wed 15:00)

Both  $v_2$  and  $v_3$  smaller for charm wrt light quarks: different degree of thermalization, recombination?

Very little centrality dependence: constant triangularity from geometrical fluctuations

Models (including charm re-scattering) qualitatively describe  $v_2$  and  $v_3$  data



E. Bruna (INFN-To)





What's new?

! "#\$%&' (#)\*+ , +- . /0

12

2\* " \*\$#&'!())&%!!\*+,'#-'3\*43%&')1",=(5#>&CC%9>>4/ '#(5#A4HA#C |#

34'5#/6#(#! "#\$\$%&'!())&%!!\*+,'#-'\$+./\*,-%& "%O\*#-%')1 7 89(&5:-;9<(:#9=9<5%/'>#?"%"5 9=9<5%/'>#%%/@#<A(%@B89(&5: 7 '/'-C%/@C5#DE! (':#'/'-C%/@C5#F<sup>G</sup>?"%"5 F<sup>G</sup>

A. Dubla (Tue 15:00) T-W. Wang (Wed 16:20) Q. Hu (Wed 15:00)





**Experimental new results** 

5'! %



=! <<sup>8</sup> =! ?/!









|                                                           | Models & Effective Theories                      |                                                                                                                                |                     |                                                                                    |  |  |
|-----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------|--|--|
|                                                           | elastic                                          | Elastic + radiative                                                                                                            | radiative           | Other                                                                              |  |  |
| ransport coeff based<br>V,)                               | TAMU<br>POWLANG HTL<br>Catania LV                | Duke                                                                                                                           | ASW                 | ADS/CFT<br>POWLANG IQCD<br>DABMOD (poster R. Katz)<br>S. Li et al, arXiv:1803.0150 |  |  |
| ross section (or   M  <sup>2</sup> )<br>ased (Boltzmann,) | AMPT<br>MC@sHQ el<br>URQMD<br>PHSD<br>Catania BM | Djordjevic et al<br>MC@sHQ el + rad<br>BAMPS<br>CUJET3<br>Abir and Mustafa<br>LBL-CCNU<br>VNI/BMS<br>LIDO (DUKE; poster W. Ke) | SCET <sub>G,M</sub> |                                                                                    |  |  |









- $\eta_{\text{D}} \; \alpha \; \text{T}^2\text{:} \; \text{pQCD}$  (fixed  $\alpha_{\text{s}}\text{)}\text{,} \; \text{AdS/CFT}$
- $\eta_{D} \alpha$  T: pQCD (running  $\alpha_{s}$ )
- $\eta_D \alpha$  T<sup>0</sup>: QPM, DQPM, U potential (TAMU)

Tuned to reproduce  $R_{AA} \Rightarrow$  Larger coupling with the bulk near  $T_c$  (when the hydro  $v_2$  has fully developped)  $\Rightarrow$ Larger  $v_2$ 





### Tension between $R_{AA}$ and $v_2$ (at low $p_T$ ): the Catania Cocktail



Nice guideline but need:

- To consider extra ingredients (bulk, initial v2,...)
- To assess the uncertainties on « Coal » and « HR »
- ... before one can think of ruling out other trends for  $\eta_{\text{D}}$ .



### Status of high $p_T HQ$

Over the past years, steady development of several sophisticated pQCD-based radiative Energy loss schemes in order to cope with the radiation of energetic partons: BDMPSZ, AMY, higher twist, DGLV, SECT... some of them leading to successful comparison with the data in their numerical implementation...



BDMPS (« infinite » path length regime)

#### Although some « extra ingredients » differ...

| pQCD e-loss<br>MODELS               |   | Radiative<br>energy loss | Coalescence |   |   |
|-------------------------------------|---|--------------------------|-------------|---|---|
| CUJET3.0<br>JHEP 02 (2016) 169      | ~ | ~                        | ×           | × | × |
| Djordjevic<br>PRC 92 (2015) 024918  | ~ | 4                        | ×           | × | ~ |
| MC@sHQ+EPOS<br>PRC 89 (2014) 014905 | ~ | ~                        | ~           | ~ | ~ |
| SCET<br>JHEP 03 (2017) 146          | ~ | ~                        | ×           | × | ~ |

... Overall success of pQCD for describing the gluon radiation from a hot medium. Beware :  $\hat{q}\,$  is « just » an indirect result in some of those formalisms



### Status of high $p_T$ HQ: prospects

Other challenges:

- Better understanding of heavy mass effect and medium properties in the radiation (especially on the coherence effects)
- Embedding in a realistic medium
- In a « jetty » picture: Combination of induced Eloss affecting the « initial » DGLAP evolution and the final « on shell » HQ.



Good agreement with CMS data for D and B, some influence of higher order term at intermediate  $p_{\tau}$ 



### HQ-Working Group (convener: X-N Wang)

The goal is to : • Collect and compare the transport coefficients from various models,

- · Measure and understand their consequences by first studying a simpler brick problem
- Estimate some systematics + uncertainties

Best controled QGP ever: uniform fixed temperature for all models (with same initial condition FONLL-like @ RHIC)

1) Rescale the coefficients to match R<sub>AA</sub>=0.3 at p=15 GeV & « final time » 3 fm/c 2) Compare them ! Juke Duke T=250 MeV LBL-CCNU LBL-CCNU BL-CCNU T = 250 MeV t = 3 fm Catania QPM Catania QPM QPM part atania OPM atania pOCD atania pQCD (tune 2) atania pOCD AME TAMU (GeV / fm) [elastic 'AMU Frankfurt PHSD Frankfurt PHSD rankfurt PHSD Nantes col.+rad Nantes col.+rad Nantes col.+rad.  $R_{\Lambda\Lambda}$ Nantes col Nantes col Nantes col **pOCD** & 0.6 T=250 Me T-Matrix 0.3 FI + rad. 0.0 p<sub>T</sub> (GeV) 20 p (GeV) p (GeV)

Main result: Nice structuration of the transport coefficients in different classes. For each class, the work illustrates the maximal accuracy reachable for each class once all other ingredients are either fixed or chosen commonly

# What looks exciting?

S. Plumari (Tue 15:20)

S. Chatterjee (Wed 10:20)

Directed flow  $v_1$  with open heavy flavours

Interplay of two main sources for v<sub>1</sub>:

What looks exciting?

New observables

- · Initial tilt of fireball (hydro based)
  - independent of charges

 expected to give larger effect for HQ (produced according to N<sub>coll</sub> profile, symmetric in rapidity)

```
\rightarrow slope v<sub>1</sub> (y)<sub>HQ</sub> > slope v<sub>1</sub> (y)<sub>LQ</sub> ?
```

Chatterjee, Bozek, arXiv: 1804.04893

- Varying magnetic field influences moving charges
  - charge-dependent v<sub>1</sub>

 expected to give larger effect for HQ (produced when magnetic field is maximum)

```
→ slope v_1(y)_{HQ} > slope v_1(y)_{LQ} ?

→ v_1(D) - v_1(D) ?
```

Das, Greco et al., Phys.Lett. B768 (2017) 260





0.08

(III) 0.06 (IIII) 0.04

charm τ<sub>form</sub>



INFN

LHC: Pb+Pb@2.76 TeV

\_\_\_ eB

hydro τ<sub>o</sub>

t (fm/c)

n=1.0





Caio Prado

Quark Matter 2018 Review

18-05-31

21/28

### Directed flow $v_1$ with open heavy flavours



### First observation of non-zero $D^0\,\nu_1$

 $\mathsf{D}^{0}\,\mathsf{v}_{1}\text{-slope}$  much larger than the kaons





INFN

Rapidity (y)

### Directed flow v<sub>1</sub> with open heavy flavours

### First observation of non-zero D<sup>0</sup> v<sub>1</sub>

 $D^0 v_1$ -slope much larger than the kaons

No firm conclusion yet on possible magnetic field induced splitting  $\Delta v_1 = v_1(D) - v_1(\overline{D})$ 

Very promising sensitivity to the effect of the early time magnetic field in heavy-ion collisions, can help constrain QGP properties

E. Bruna (INFN-To)

- 44

18-05-31







INFN

## New observables



#### New Observables are coming

#### Short term, mid-term, long term,...

| What                                            | Good for ?                                                                                                                                                | Caviat                                                                           |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|
| Event shape engineering                         | Strength and T dependence of the interaction                                                                                                              | Might be sensitive to the bulk<br>and initial stage => play collective           |  |  |
| Heavy light - correlations                      | b/c-jet substruture, nature of the<br>interaction<br>Poster Rohmoser                                                                                      | Might be sensitive to various HF creation in pp, to be calibrated Poster Vermunt |  |  |
| $\Lambda_{c}, D_{s}, B_{s}$                     | Understanding hadronization esp.<br>Recombination (if generic enough not<br>to require 1 new free parameter per<br>state) or limits of statistical models | Dynamical treatment of<br>confinement ? Inputs from IQCD<br>probably needed      |  |  |
| v <sub>1</sub> (y) // Chatterjee<br>Poster Coci | Constrain (E,B), vorticity, initial tilt of<br>matter initial distribution of HQ in<br>transverse plane                                                   | Isn't it a bitt too much for this poor observable ?                              |  |  |

## Are you cheating?

Development of HF  $\textit{v}_2$  and  $\textit{v}_3$ 

### New results at 5.02 TeV: *D*-meson $v_2$ and $v_3$ in Pb-Pb



Transport calculations carried out in JHEP 1802 (2018) 043, with hydro background calculated via the ECHO-QGP code (EPJC 73 (2013) 2524)

Caio Prado

Quark Matter 2018 Review

イロト イポト イヨト イヨト

## Are you cheating?



Development of HF  $\textit{v}_2$  and  $\textit{v}_3$ 

### New results at 5.02 TeV: *D*-meson $v_2$ and $v_3$ in Pb-Pb



Transport calculations carried out in JHEP 1802 (2018) 043, with hydro background calculated via the ECHO-QGP code (EPJC 73 (2013) 2524)

(ロト (アト (主)) (主) (主) (13/20)

26/28

## Are you cheating?



Development of HF v2 and v3

### Time development of azimuthal anisotropies



- Most of the HQ's decouple quite late ( $\sim 50\%$  after 8 fm/c);
- Final elliptic flow from a complex interplay of contributions from the whole medium history;
- HQ v<sub>2</sub> correlated with the one of the fluid cell;
- supplementary information from p<sub>T</sub>-differential analysis;

18-05-31

14 / 20

## Conclusions



- A lot of new results from the experiments!
- Huge amount of physics pertaining all the processes: do you feel kinda lost?
- Aim at quantitative rather than qualitative predictions... How? New observables...?
- Quark Matter in Wuhan: what is waiting for us there?

28/28