Physics at Z pole

Zhijun Liang IHEP, CAS

Introduction

- CEPC have good potential in electroweak precision physics at Z pole.
 - Latest design in CEPC Z pole accelerator
 - L=1.6 X 10³⁵ cm⁻²s⁻¹ (one order of magnitude larger than pre-CDR)
 - Aim to have 10¹¹ Z boson for electroweak precision physics
- The accelerator design for WW threshold scan runs are also updated
 - Total luminosity 3.2 ab⁻¹
 - Aim to have 1 MeV level precision for W mass measurement
 - More details in Hengne and Peixun's talk

Status of W/Z physics study in CEPC

- The prospect of W/Z physics study in CEPC are under study
 - New full simulation with latest detector geometry and magnetic field (3T)

Observable	LEP precision	CEPC precision	CEPC runs
m_Z	2 MeV	0.5 MeV	Z threshold scan
A^b_{FB}	1.7%	0.1%	Z threshold scan
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.002%	Z threshold scan
R_b	0.3%	0.02%	Z pole
R_{μ}	0.2%	0.01%	Z pole
$N_{ u}$	1.7%	0.05%	ZH runs
m_W	33 MeV	2-3 MeV	ZH runs
m_W	33 MeV	1 MeV	WWthreshold

Branching ratio (R^b)

- LEP measurement 0.21594 ±0.00066 (~0.3%)
 - Stat unc and Systematics Unc. Have similar contribution

• CEPC

- Expected Stat Unc. Is neglectable
- Expected Syst error (0.02%)
- Expect to use 80% working points
 - 15% higher efficiency than SLD
 - 20-30% higher in purity than SLD

 $\underline{\Gamma(\mathrm{Z}\to\mathrm{b}\bar{\mathrm{b}})}$

 $\overline{\Gamma(\mathrm{Z} \to \mathrm{had})}$

Uncertainty	LEP	CEPC	Thing to improve
hemisphere tag correlations for b events	0.2%	0.02%	B tagging performance, pixel
gluon splitting	~0.15%	0.01%	Better granularity in Calo

R^b: hemisphere tag correlations

- Study hemisphere b tag correlations systematics with full simulation
- Two ways to reduce correlations factor -> reducing systematics
 - Using higher efficiency b tagging working points
 - Using tighter cuts to choose Z->bb events
 - Correlations factors c_b need to be reduced below 0.01% (systematics 0.02%)

Branching ratio (R^b): gluon splitting

• To reduce the R_b systematics

- Another task is to measure gluon splitting
- plan to setup dedicated analysis for gluon splitting measurement

Branching ratio (R^µ)

- LEP result: 0.2% total error (Stat : 0.15%, Syst : 0.1%)
- CEPC : 0.01% total error expected
 - Higher granularity and better resolution in EM calorimeter is the key

Systematics source	LEP	CEPC
Radiative events (Ζ->μμγ)	0.05%	0.01%
Muon Momentum scale	0.009%	<0.005%

Weak mixing angle

- LEP/SLD: 0.23153 ± 0.00016
 - ~0.07% precision. (Stat error is limiting factor.)

• CEPC

- Aim for 0.002% precision
 - Input from Backward-forward asymmetry measurement of Z->bb and Z-> $\mu\mu$
 - Z->ee, Z->**ττ** have not been studied yet.

Backward-forward asymmetry

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Select one lepton from b/c decay, and one b jets
 - Select lepton charge (Q_lepton) and jet charge (Q_jet)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Select two b jets
 - use event Thrust to define the forward and background
 - Use jet charge difference (Q_F Q_B)

Backward-forward asymmetry

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Method 3: D meson method (>8%, method)
- CEPC
 - Focus more on method 2 (inclusive b jet measurement)
 - Expected Systematics (0.15%) :

Uncertainty	LEP	CEPC	Things to improve
hemisphere tag correlations for b events	1.2%	0.1%	Higher b tagging efficiency
QCD and thrust axis correction	0.7%	0.1%	

Backward-forward asymmetry

- Uncertainty Afb_b due to QCD correction to Thrust
 - Higher order QCD effect is major systematics

(d) Thrust forward, quark backward

Error source	$C_{ m QCD}^{ m quark}$ (%)		$C_{\rm QCD}^{\rm part,T}$ (%)	
	$b\bar{b}$	$c\bar{c}$	$b\bar{b}$	$c\bar{c}$
Theoretical error on m_b or m_c	0.23	0.11	0.15	0.08
$\alpha_s(m_{\rm Z}^2) \ (0.119 \pm 0.004)$	0.12	0.16	0.12	0.16
Higher order corrections	0.27	0.66	0.27	0.66
Total error	0.37	0.69	0.33	0.68

 $A_{FB}^{bb}(0)$

Backward-forward asymmetry in Z->µµ

- LEP measurement : 1.69% +-0.13% (PDG fit)
- CEPC aim to improve it by a factor of 20~30.
 - muon angular resolution and acceptance
 - the precision of beam energy measurement
- Full simulation studies to understand muon angular resolution
 - Muon angular resolution can reach 1e⁻⁴ to 1e⁻⁵ level

By Mengran Li (IHEP)

lcos(θ)l in [0.8,1.0]

Weak mixing angle (2)

- Comparison with Fcc-ee on weaking mixing angle measurement
 - Expect 1~2 order magnitude better than LEP results

Improvement compared to LEP results	CEPC	FCC-ee (from Paolo's talk)
AFB (Z->ee)	NA	50
AFB (Ζ->μμ)	20-30	30
AFB (Ζ-> ττ)	NA	15
AFB (Z->bb)	10	5
Weak mixing angle	30	100

Summary

- CEPC electroweak physics community is working on in Conceptual Design Report.
 - updated in CEPC accelerator design on Z pole and WW threshold runs
 - one order of magnitude larger than pre-CDR
 - Prospect of CEPC W/Z physics improved benefitted from higher design luminosity
 - More details about W physics in Hengne and Peixun's talk
- Welcome to join this effort
 - Lots of work needed to understand the systematics