Exercise (ILC Introduction)

- Undulator scheme requires very high energy electron to create positron
- Radiation from a helical undulator has a photon energy spectrum as shown.
- The wavelength of the first harmonics is

$$\lambda = \frac{\lambda_w}{2\gamma^2} \left(1 + K^2 \right)$$

- λ_w : wiggler pitch
- γ : electron Lorentz factor
- *K* : wiggler parameter

 E_{γ} (MeV)

- ILC adopts λ_w =11.5mm, K=0.92 with electron energy 125GeV
- Problems
 - Calculate λ
 - Convert it to the photon energy

Answer

- $\gamma = 125/0.511 \times 10^{-3} = 2.446 \times 10^{5}$
- $\lambda = \frac{11.5 \times 10^{-3}}{2 \times (2.446 \times 10^5)^2} \times (1 + 0.92^2) = 1.775 \times 10^{-13} \text{ m}$
- Energy E_{γ} is proportional to $1/\lambda$
- Compton wavelength 2.4x10⁻¹² m corresponds to the electron mass 0.511MeV
- So, $E_{\gamma} = 0.511 \text{ x} (2.4 \text{ x} 10^{-12} / 1.775 \text{ x} 10^{-13}) = 6.9 \text{ MeV}$
- Note: the plot in the previous page is slightly different because K=0.85