

Introduction to CEPC

J. Gao

Institute of High Energy Physics

ASSCA2018 December 10-16, 2018, IHEP, Beijing, China

Outline

- CEPC CDR status, civil engineering, implementation, cost
- CEPC R&D toward TDR
- CEPC siting
- CEPC accelerator TDR international collaboration and with industries, and TDR management
- Summary

CEPC Accelerator CDR Status

CEPC as a Higgs Factory (Z,W and followed by SppC)

CEPC-SppC Physics Goals in CDR (remind)

- Electron-positron collider (91, 160, 240 GeV)
 - Higgs Factory (10⁶ Higgs) :
 - Precision study of Higgs(m_H, J^{PC}, couplings), Similar & complementary to ILC
 - Looking for hints of new physics
 - Z & W factory (10¹⁰ Z⁰) :
 - precision test of SM
 - Rare decays ?
 - Flavor factory: b, c, τ and QCD studies
- Proton-proton collider(~100 TeV)
 - Directly search for new physics beyond SM
 - Precision test of SM
 - e.g., h³ & h⁴ couplings

CEPC Design – Higgs Parameters

Parameter	Design Goal
Particles	e+, e-
Center of mass energy	2*120 GeV
Luminosity (peak)	>2*10^34/cm^2s
No. of IPs	2

CEPC Design – Z-pole Parameters

Parameter	Design Goal
Particles	e+, e-
Center of mass energy	2*45.5 GeV
Integrated luminosity (peak)	>10^34/cm^2s
No. of IPs	2
Polarization	to be considered in the second round of design

*Be noted that here the luminosities are the lowest reuiqrement to accomodate different collider schemes

CEPC CDR Accelerator Chain and Systems

CEPC Four Options Evoluting towards CDR

CEPC 100km circumference was decided by CEPC SC based on the recommendation from IAC in Nov. 2016
CEPC baseline and alternative options have been decided on Jan. 14, 2017

CEPC CDR Baseline Layout

CEPC Linac injector (1.2km, 10GeV)

CEPC Three Modes of Operation: Higgs, W, and Z

- Higgs factory as first piority (fully partial double ring, with common SRF system for e+ and e- beams)
- W and Z factories are incorperated by beam swithyard (W and Z factories are double ring, with

independent SRF system for e+ and e- beams)

Higgs factory baseline SR per beam 30 MW to Minimize AC power

Economic CEPC baseline design as Higgs factory:

- W, Z factories incoperated with the same SRF system hardwares by using beam switchyard to change from Higgs factory and W, Z factories
- Synchrotron radiation power per beam at Higgs energy is set to 30MW to minimize AC power consumption

CEPC Accelerator CDR Completed

CEPC accelerator CDR completed and released on Sept. 2, 2018

- Executive Summary
- 1. Introduction
- 2. Machine Layout and Performance
- 3. Operation Scenarios
- 4. CEPC Collider
- 5. CEPC Booster
- 6. CEPC Linac
- 7. Systems Common to the CEPC Linac, Booster and Collider
- 8. Super Proton Proton Collider
- 9. Conventional Facilities
- 10. Environment, Health and Safety
- 11. R&D Program
- 12. Project Plan, Cost and Schedule
- Appendix 1: CEPC Parameter List
- Appendix 2: CEPC Technical Component List
- Appendix 3: CEPC Electric Power Requirement
- Appendix 4: Advanced Partial Double Ring
- Appendix 5: CEPC Injector Based on Plasma Wakefield Accelerator
- Appendix 6: Operation as a High Intensity γ-ray Source
- Appendix 7: Operation for e-p, e-A and Heavy Ion Collision
- Appendix 8: Opportunities for Polarization in the CEPC
- Appendix 9: International Review Report

CDR Version for International Review June 2018, and formally relased on Sept. 2, 2018:arXiv: 1809.00285, http://cepc.ihep.ac.cn/CDR_v6_201808.pdf

Mini-Review Workshop of CEPC-SPPC CDR (Nov. 4-5, 2017, IHEP)

CEPC-SPPC CDR Mini-review members

Name (alphabetical order)		
Anton Bogomyakov	BINP	Russia
Brian Foster	Oxford U.	U.K.
Eugene Levichev	BINP	Russia
Kexin Liu (刘克新)	Peking U.	China
Ernie Malamud	Fermilab	USA
Kazuhito Ohmi	KEK	Japan
Katsunobu Oide	CERN / KEK	Switzerland
Carlo Pagani	U. of Milan /	INFN Italy
John Seeman	SLAC	USA
Sergey Sinyatkin	BINP	Russia
Mike Sullivan	SLAC	USA
Chuanxiang Tang(唐传祥) Tsinghua U	.China
Lin Wang (王林)	USTC	China
Xiangqi Wang(王相綦)	USTC	China
Akira Yamamoto	KEK	Japan

		Sunday, No	vember 5		
08:3 09:0 09:3 10:0	30 - 09:00 00 - 09:30 30 - 10:00 00 - 10:30	SRF RF power source Cryogenic system Magnet		Jiyuan Zhai Zusheng Zhou Shaopeng Li Fusan Chen	
10:3	<u>30 - 11:00</u>	Coffee (30')			
		Informal Mini-Review of CEPC-S	PPC CDR		
		November 4 – 5, 2017, IHEP, Main Build	ling, Room A415		
		<u>Agenda</u> (draft v2. 09/14/20	017)	_	
		Saturday, November 4			
08:30 - 08:35	Welcome		Yifang Wang		
8:35 - 09:10	- 09:10 Overview of beam dynamics		Chenghui Yu		
9:40 - 10:10	1:40 Parameters		Yiwei Wang	Yiwei Wang	
0:10 - 10:40	0:40 Dynamic aperture		Yuan Zhang	Yuan Zhang	
l0:40 - 11:10	Coffee (30)')			
1:10 - 11:40	Beam-bea	m	Yuan Zhang	_	
.1:40 - 12:10	Instabiliti	es	Na Wang		
.2:10 - 12:40	Machine-	detector interface	Sha Bai		
12:40 - 14:00		Lunch			
4:00 - 14:30	Injection	and extraction	Xiaohao Cui		
4:30 - 15:00	Booster		Tianjian Bian		
15:00 - 15:30	Linac and sources Cai Meng				
15:30 - 16:00	Coffee (30)')			
16:00 – <mark>16:3</mark> 0	Synchrotr	on radiation	Yadong Ding		
.6:30 - 17:00	Overview	of SPPC	Jingyu Tang		
17:00 - 17:30	SC magne	t for SPPC	Qingjin Xu		
17:30 - 18:30	Discussion	1	All		
9:00		Dinner			

International Review of CEPC CDR (June 28-30, 2018, IHEP)

International Review of CEPC CDR

June 28 – 30, 2018, IHEP, Main Building, Room A415

Agenda

	Thursday, June 28		
	Chair: K. Oide		
8:30-9:00	Committee Executive Session		
	Chair: Qing Qin		
9:00-9:05	Welcome	Yifang Wang	
9:05-9:20	Overview of CEPC	Jie Gao	
9:20-9:35	Overview of beam dynamics	Chenghui Yu	
9:35-10:05	CEPC collider lattice design	Yiwei Wang	
10:05-10:35	CEPC beam-beam and DA	Yuan Zhang	
	Coffee break(30')		
	Chair: K. Oide		
11:05-11:35	Instabilities	Na Wang	
11:35-12:05	Machine-detector interface	Sha Bai	
12:05 - 14:00	Lunch break		
	Chair: K. Oide		
14:00-14:30	Booster	Dou Wang	
14:30-15:00	Injection and extraction	Xiaohao Cui	
15:30-16:00	Linac injector	Cai Meng	
	Coffee break(30')		
16:30-18:30	Committee Executive Session		
19:00	Dinner of Committee		

Chair: K. Oide		Saturday, June 30	
SRF system RF power source Cryogenic system CEPC collider ring Magnet CEPC booster ring magnet Coffee break(30') SC magnet for CEPC IR Power supplies Vacuum	8:30-9:00 9:00-9:30 9:30-10:00 10:00-10:30 11:00-12:00	Chair: K. Oide Survey and alignment Mechanics Conventional facilities Site investigation Coffee break (30') Discussion with CEPC team	Xiaolong Wang Haijing Wang Guoping Lin Yu Xiao
	12:00 - 14:00	Lunch break	
Chair: K. Oide Instrumentation Control Synchrotron radiation Radiation shielding Coffee break(30') Committee Executive Sessio	14:00-16:00 16:30-17:30	Committee Executive Session Coffee break (30') Close out	
Dipr		Banquet	
	Chair: K. Oide SRF system RF power source Cryogenic system CEPC collider ring Magnet CEPC collider ring Magnet CCPC booster ring magnet Coffee break(30') SC magnet for CEPC IR Power supplies Vacuum Chair: K. Oide Instrumentation Control Synchrotron radiation Radiation shielding Coffee break(30') Committee Executive Sessia	Chair: K. OideSRF system RF power source Cryogenic system CEPC collider ring Magnet CEPC booster ring magnet CEPC booster ring magnet CCPC booster ring magnet Confree break(30')8:30-9:00 9:00-9:30 9:00-9:30 9:30-10:00 10:00-10:30SC magnet for CEPC IR Power supplies Vacuum11:00-12:00Chair: K. Oide Instrumentation Control Synchrotron radiation Radiation shielding14:00-16:00Chairee Executive Sessic Committee Executive Sessic16:30-17:30	Chair: K. OideSaturday, June 30SRF system RF power source Cryogenic system CEPC collider ring Magnet CEPC collider ring magnetChair: K. Oide Survey and alignment Mechanics Onventional facilities Site investigationCoffee break(30')Survey and alignment 9:30-10:00 10:00-10:30SC magnet for CEPC IR Power supplies Vacuum11:00-12:00Instrumentation Control Synchrotron radiation Radiation shielding14:00-16:00Coffee break(30')Committee Executive Session Inf:30-17:30Committee Executive Session16:30-17:30DinrBanquet

Review Committee Members:

Brian Foster Oxford U./DE	ESY
Eugene Levichev	BINP
Katsunobu Oide (chair)	CERN/KEK
Kazuro Furukawa	KEK
Manuela Boscolo	INFN
Marica Biagini	INFN
Masakazu Yoshioka	KEK/Tohoko University
Norihito Ohuchi	KEK
Paolo Pierini	ESS
Steinar Stapnes	CERN
Yoshihiro Funakoshi	KEK
Zhengtang Zhao (absent)	SINAP

International Review Report (draft) of CEPC CDR (June 28-30, 2018, IHEP)

International Review of the CEPC Conceptual Design Report - Accelerator Design –

> June 28 – 30, 2018 IHEP, Beijing

This is the review report of the accelerator part of the CEPC CDR. The review is done for the presentations based on the draft version of the CDR. Extensive discussions have been held between the review committee members and the CEPC team during the review meeting.

General remarks

The Circular Electron-Positron Collider (CEPC) is a very ambitious and important project

aimed at various physics at ZH (E_{beam} = 120 GeV), W± (80 GeV), and Z (46 GeV) production which would produce the highest luminosity ever achieved by a collider in the world. The Superconducting Proton-Proton Collider (SppC) is planned as the second stage of the project using the same collider tunnel to explore the energy frontier of elementary particle physics.

The Review Committee unanimously congratulates the CEPC team on the completion of the CDR, with remarkable successes in various aspects of the design. The progress since the pre-CDR has been a major step in the project, especially the full double-ring scheme, lattice design, and Various beam dynamics with beam-beam effects and collective phenomena. The design work on each system has verified the basic feasibility of the project, including the superconducting RF, normal and superconducting magnets, cryogenic system, vacuum system, injectors with a booster synchrotron and a linac, instrumentation, control, safety, civil engineering, etc.

The Committee believes that the CDR has already reached a sufficient level of maturity to allow approval to proceed to a Technical Design Report. On the other hand, we think that this machine has more potential for further exensions, including:

- (1) Experiments for ttbar production (Ebeam ≈ 180 GeV);
- (2) Even higher luminosity (~x10) at Z and W±;
- (3) Higher beam current, up to 50 MW/beam synchrotron radiation loss;
- (4) More interaction points;
- (5) Polarized beams.

These extensions will be achievable if the machine preserves the possibility to implement these possibilities by relatively small investments, such as longer quadrupole magnets, a less compressed layout around the interaction point (IP) with shallower bends, and sufficient length for the RF section. Actually, such improvements may even reduce the operation costs. The committee encourages the CEPC team to explore and preserve these possibilities, since once CEPC is built, no second machine with the same scale is likely to be built in the world.

The Review Committee unanimously congratulates the CEPC team on the completion of the CDR, with remarkable successes in various aspects of the design. The progress since the pre-CDR has been a major step in the project...

The Committee believes that the CDR has already reached a sufficient level of maturity to allow approval to proceed to a Technical Design Report.

CEPC CDR Parameters

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs	2				
Beam energy (GeV)	120	80	45.5		
Circumference (km)		100			
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036	6	
Crossing angle at IP (mrad)	•	16.5×2			
Piwinski angle	2.58	7.0	23.8		
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0		
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+	10%gap)	
Beam current (mA)	17.4	87.9	461.0)	
Synchrotron radiation power /beam (MW)	30	30	16.5		
Bending radius (km)		10.7			
Momentum compact (10-5)		1.11			
β function at IP β_x^* / β_v^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance $\varepsilon_x / \varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_x/\sigma_v(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters ξ_x/ξ_v	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072	
RF voltage V_{RF} (GV)	2.17	0.47	0.10		
RF frequency f_{RF} (MHz) (harmonic)		650 (216816)			
Natural bunch length σ_z (mm)	2.72	2.98	2.42		
Bunch length σ_{z} (mm)	3.26	5.9	8.5		
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94		
Natural energy spread (%)	0.1	0.066	0.038	3	
Energy acceptance requirement (%)	1.35	0.4	0.23		
Energy acceptance by RF (%)	2.06	1.47	1.7		
Photon number due to beamstrahlung	0.1	0.05	0.023		
Lifetime _simulation (min)	100				
Lifetime (hour)	0.67	1.4	4.0	2.1	
F (hour glass)	0.89	0.94	0.99		
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1	

Lattice of the CEPC Collider Ring and MDI

illing requirements of the nerve store list, seems try, MDI

CEPC Collider Ring Dynamic Apertures (w/o errors)

Tracking in SAD w/ synchrotron radiation damping, fluctuation(100 samples), energy sawtooth and tapering, 145/475/2600 turns(H/W/Z, 2 damping times), 4 initial phases

CEPC Collider Ring SRF Parameters

Collider parameters: 20180222	Н	W	Z
SR power / beam [MW]	30	30	16.5
RF voltage [GV]	2.17	0.47	0.1
Beam current / beam [mA]	17.4	87.9	461
Bunch charge [nC]	24	24	12.8
Bunch number / beam	242	1220	12000
Bunch length [mm]	3.26	6.53	8.5
Cavity number (650 MHz 2-cell)	240	2 x 108	2 x 60
Cavity gradient [MV/m]	19.7	9.5	3.6
Input power / cavity [kW]	250	278	276
Klystron power [kW] (2 cavities / klystron)	800	800	800
HOM power / cavity [kW]	0.54	0.86	1.94
Optimal Q _L	1.5E6	3.2E5	4.7E4
Optimal detuning [kHz]	0.17	1.0	18.3
Total cavity wall loss @ 2 K [kW]	6.6	1.9	0.2

Kickers and Septums for collider injection

Component	Length (m)	Waveform	Deflection	Field (T)	Beam	-Stay-
			angle		clear	
			(mrad)		H (m	V (m
					m)	m)
Septum	8.75	DC	14	0.64	20	20
Septum	8.75	DC	7	0.32	20	20
Septum	8.75	DC	3.5	0.16	20	20
Septum	8.75	DC	1.75	0.08	20	20
Kicker	2	Half_sin	0.1	0.02	20	20

CEPC Collider Ring Impedance Budget

Components	Number	<i>Z/n,</i> mΩ	k _{loss} , V/pC	ky, kV/pC/m
Resistive wall	-	6.2	363.7	11.3
RF cavities	336	-1.4	315.3	0.41
Flanges	20000	2.8	19.8	2.8
BPMs	1450	0.12	13.1	0.3
Bellows	12000	2.2	65.8	2.9
Pumping ports	5000	0.02	0.4	0.6
IP chambers	2	0.02	6.7	1.3
Electro-separators	22	0.2	41.2	0.2
Taper transitions	164	0.8	50.9	0.5
Total		10.5	876.8	20.4

Broadband impedance threshold:

Threshold	ttbar	Higgs	W	Z
$ Z_L/n _{eff}$, m Ω	13.6	9.0	8.0	2.1
κ _γ , kV/pC/m	81.2	61.6	69.0	38.7

Longitudinal wake at the nominal σ_z = 3mm

CEPC Collider Ring Collective Instabilities

- The design single bunch intensity are all below the instability threshold.
- Transverse and longitudinal feedbacks are needed to damp the coupled bunch instabilities.
 CDR

Beam instability	ttbar	Higgs	W	Z
Bunch lengthening, σ_l / σ_{l0}	13%	20%	22%	73%
Beam energy spread increase, $\sigma_{e'} \sigma_{e0}$	~0	~0	2%	15%
CSR threshold N _{bth,} nC	1565	622	201	38
Transverse impedance tune shift $\Delta v_{x,y}$	-0.02	-0.01	-0.006	-0.008
Transverse Mode Coupling N _{bth} , nC	207	93	37	16
Transverse resistive wall instability, ms	1986	298	39	11
Longitudinal RF HOMs CBI, ms	4.3E4	3.8E3	446	87
Transverse RF HOMs CBI, ms	1.2E4	1.7E3	352	85
Fast beam ion instability, ms	900	76	18	7

CEPC Booster parameters @ injection (10GeV)

		Н	W	Ζ		
Beam energy	GeV		10			
Bunch number		242	1524	6000		
Threshold of single bunch current	μA	25.7				
Threshold of beam current (limited by coupled bunch instability)	mA	127.5				
Bunch charge	nC	0.78	0.63	0.45		
Single bunch current	μA	2.3	1.8	1.3		
Beam current	mA	0.57	2.86	7.51		
Energy spread	%	0.0078				
Synchrotron radiation loss/turn	keV	73.5				
Momentum compaction factor	10-5		2.44			
Emittance	nm		0.025			
Natural chromaticity	H/V		-336/-333			
RF voltage	MV		62.7			
Betatron tune $v_x/v_y/v_s$			263.2/261.2/0.2	1		
RF energy acceptance	%		1.9			
Damping time	S		90.7			
Bunch length of linac beam	mm		1.0			
Energy spread of linac beam	%		0.16			
Emittance of linac beam	nm		40~120			

CEPC Booster parameters @ extraction

		I	I	W	Z
		Off axis injection	On axis injection	Off axis injection	Off axis injection
Beam energy	GeV	12	20	80	45.5
Bunch number		242	235+7	1524	6000
Maximum bunch charge	nC	0.72	24.0	0.58	0.41
Maximum single bunch current	μΑ	2.1	70	1.7	1.2
Threshold of single bunch current	μA	30	00		
Threshold of beam current (limited by RF power)	mA	1.	0	4.0	10.0
Beam current	mA	0.52	1.0	2.63	6.91
Injection duration for top-up (Both beams)	S	25.8	35.4	45.8	275.2
Injection interval for top-up	S	- 73	.1	153.0	438.0
Current decay during injection interval			3'	%	
Energy spread	%	0.0	94	0.062	0.036
Synchrotron radiation loss/turn	GeV	1.:	52	0.3	0.032
Momentum compaction factor	10-5		2	44	
Emittance	nm	3.:	57	1.59	0.51
Natural chromaticity	H/V		-336/	/-333	
Betatron tune v_x/v_y			263.2	/261.2	
RF voltage	GV	1.	97	0.585	0.287
Longitudinal tune		0.	13	0.10	0.10
RF energy acceptance	%	1.	0	1.2	1.8
Damping time	ms	5	2	177	963
Natural bunch length	mm	2.	8	2.4	1.3
Injection duration from empty ring	h	0.	17	0.25	2.2

CEPC Booster Optics & Geometry

CEPC Booster SRF Parameters

10 GeV injection	Н	W	Z
Extraction beam energy [GeV]	120	80	45.5
Bunch number	242	1524	6000
Bunch charge [nC]	0.72	0.576	0.384
Beam current [mA]	0.52	2.63	6.91
Extraction RF voltage [GV]	1.97	0.585	0.287
Extraction bunch length [mm]	2.7	2.4	1.3
Cavity number in use (1.3 GHz TESLA 9-cell)	96	64	32
Gradient [MV/m]	19.8	8.8	8.6
QL	1E7	6.5E6	1E7
Cavity bandwidth [Hz]	130	200	130
Beam peak power / cavity [kW]	8.3	12.3	6.9
Input peak power per cavity [kW] (with detuning)	18.2	12.4	7.1
Input average power per cavity [kW] (with detuning)	0.7	0.3	0.5
SSA peak power [kW] (one cavity per SSA)	25	25	25
HOM average power per cavity [W]	0.2	0.7	4.1
Q ₀ @ 2 K at operating gradient (long term)	1E10	1E10	1E10
Total average cavity wall loss @ 2 K eq. [kW]	0.2	0.01	0.02

CEPC Booster Kickers and Septums

Booster Injection

Component	Length (m)	Waveform	Deflection a n g l e	Field (T)	Beam-S	tay-clear
			(mrad)		H(mm)	V(mm)
Septum	2	DC	9.1	0.152	63	63
Kicker	0.5	Half_sin	0.5	0.034	63	63

Booster Extraction

Component	Length (m)	Waveform	Deflection a n g l e (mrad)	Field (T)	Beam-Sta	ay-clear
			(init uu)		H(mm)	V(mm)
Septum	10	DC	10.4	0.41	20	20
Kicker	2	Half_sin	0.2	0.04	20	20

Booster Injection Time Structure

CEPC Cryogenic System

Booster ring:

- > 1.3 GHz 9-cell cavities, 96 cavities
- 12 cryomodules
- 3 cryomodules/each station
- Temperature: 2K/31mbar

Collider ring:

- 650MHz 2-cell cavities, 336 cavities
- 56 cryomodules
- > 14 cryomodules/each station
- Temperature: 2K/31mbar

CEPC Linac Injector-1

Parameter	Symbol	Unit	Baseline	Design reached
e ⁻ /e ⁺ beam energy	E_{e}/E_{e^+}	GeV	10	10
Repetition rate	f_{rep}	Hz	100	100
or /o+ hunch nonulation	N_e/N_{e^+}		$> 9.4 \times 10^9$	$1.9 \times 10^{10} / 1.9 \times 10^{10}$
e /e ⁻ bunch population		nC	> 1.5	3.0
Energy spread (e ⁻ /e ⁺)	σ_{e}		< 2×10 ⁻³	1.5×10 ⁻³ / 1.6×10 ⁻³
Emittance (e^{-}/e^{+})	\mathcal{E}_r	nm∙ rad	< 120	5 / 40 ~120
Bunch length (e^{-}/e^{+})	σ_l	mm		1 / 1
e- beam energy on Target		GeV	4	4
e ⁻ bunch charge on Target		nC	10	10

CEPC Linac Injector Damping Ring

Parameters, lattice and layout

Parameters,	lattice	and lay	out	המירוע - המירוע עריין איניע	המינה היאראייר אינייייייייייייייייייייייייייייי	ר ערביים איז	ŀŀ	
DR V1.0	Unit	Value		Circular Windows	Electron and Positron version 8.51/15	Collider (March 2014 25/08/16 17.4	4) 44.07	
Energy	GeV	1.1	(")	4.15 - B		β	1.2 È	
Circumference	М	58.5	~	3.80		LARRER RATER AND A DESCRIPTION OF A DESC		
Repetition frequency	Hz	100		3.45 -			- 0.8	
Bending radius	М	3.6		2.75			- 0.7	
Dipole strength B ₀	Т	1.01		2.40			- 0.5	
U_0	keV	35.8		2.05			- 0.4	
Damping time x/y/z	Ms	12/12/6		1.35	IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	****	0.2	
δ_0	%	0.049		1.00	0 20 30	40 50		
ε ₀	mm.mrad	302		0.0 1	0. 20. 50.	40. 50.	s (m)	
Nature σ_z	mm	7 (23ps)		injection		Y [<i>о</i> у]		dp/p = -0.75%
Extract σ_z	mm	7 (23ps)			T	150	<u>∧</u> +	dp/p=-0.5%
ε _{inj}	mm.mrad	2500					/)+	dp /p =0
ε _{ext x/y}	mm.mrad	716/471				100	// +	dp/p=0.5%
$\delta_{inj}/\delta_{ext}$	%	0.6/0.07	9 m	C₀=58.5 m 9 m				dp/p=0.75%
Energy acceptance by	%	1.0						
RF							*	
f_{RF}	MHz	650		F RF	-150 -100	-50 0 50	100 150	– X [<i>σ</i> x]
V _{RF}	MV	1.8		extraction				
	1	Component	Length (m)	Waveform	Deflection	Field (T)	Beam-Sta	y-
Kickers and					angle (mrad)		H (m V (m

Septums for damping ring

	Component	Length (m)	Waveform	Deflection angle (mrad)	Field (T)	Beam-Stay- clear	
-						H (m	V(m
~	Septum	2	DC	77	0.13	63	63
	Kicker	0.5	Half_sin	0.2	0.0013	63	63

CEPC Linac Injector alternative: Plasma accelerator scheme up to 45GeV (single stage)~120GeV (cascade)

10

35

5

100

emittance

Trailor energy $E_t(GeV)$

Trailor RMS size $\sigma_t(\mu m)$

normalized

Trailor length $L_t(\mu m)$

Trailor

 $\epsilon_{nt}(mm mrad)$

The	simulations sl	now that	plasma	scheme
			•	
sat	isties the CEP	'U booste	r requi	rement

CEPC Longitudinal polarization of electrons

S. Nikitin (BINP)

CEPC Chinese MOST Fund (II) contents in 2018

Preliminary Study for CEPC Z-pole Polarization

Table A8.3: Parameters for obtaining polarization at CEPC; * and ** indicate the cases with the use of special wigglers of $B_+ = 0.5$ T and $B_+ = 0.6$ T, respectively

E, GeV	$ w_k $	G _{max}	ν _γ	$ au_{rel}$, hr	$\eta, \%$	t_{η} ,hr
45.602	10-3	0.53	0.028	17.1*	10	3.93
45.602	10 ⁻³	0.09	0.028	1.8**	6	2.28
79.978	.0005	0.32	0.040	4.8	10	2.14

A8.7: Summary

Particle polarization of at least 10% is needed to apply the resonant depolarization technique in precise measurement of the Z mass. Because of the excessively long time for radiative polarization, it becomes necessary to add to the Collider strong non-uniform wiggler magnets to speed up the polarization process. The wigglers cause a multiple increase in the spread of the spin precession frequency. This, in turn, leads to an intensification of the depolarizing effect of quantum fluctuations. The calculations of the depolarizing factor of vertical closed orbit distortions were performed taking into account the synchrotron modulation of the spin tune. Obtaining the required degree of polarization in CEPC at 45 and 80 GeV for an acceptable time is tentatively possible provided that the resonance spin harmonics of vertical closed orbit distortions are corrected to the levels indicated in the corresponding numerical examples. This conclusion is indirectly supported by similar estimates for LEP and their achieved polarization.

CEPC MDI Layout and Parameters

- The Machine Detector Interface of CEPC double ring scheme is about ±7m long from the IP.
- The CEPC detector superconducting solenoid with 3 T magnetic field and the length of 7.6m.
- The accelerator components inside the detector without shielding are within a conical space with an opening angle of cosθ=0.993.
- The e+e- beams collide at the IP with a horizontal angle of 33mrad and the final focusing length is 2.2m
- Lumical will be installed in longitudinal 0.95~1.11m, with inner radius 28.5mm and outer radius 100mm.

CEPC MDI Parameters

	range	Peak filed in coil	Central filed gradien t	Bending angle	length	Beam stay clear region	Minimal distance between two aperture	Inner diamete r	Outer diamet er	Critical energy (Horizont al)	Critical energy (Vertica l)	SR power (Horizon tal)	SR power (Vertic al)
L*	0~2.2m				2.2m								
Crossing angle	33mrad												
MDI length	±7m												
Detector requirement of opening angle	13.6°												
QD0		3.2T	136T/m		2m	19.51mm	72.61mm	40mm	53mm	1.3MeV	527keV	639W	292W
QF1		3.8T	110T/m		1.48m	26.85mm	146.2mm	56mm	69mm	1.6MeV	299keV	1568W	74W
Lumical	0.95~1.11m				0.16m			57mm	200mm				
Anti-solenoid before QD0		7.26 T			1.1m			120mm	390mm				
Anti-solenoid QD0		2.8T			2m			120mm	390mm				
Anti-solenoid QF1		1.8T			1.48m			120mm	390mm				
Beryllium pipe					±7cm			28mm					
Last B upstream	67.66~161.04m			1.1mrad	93.38m					45keV			
First B downstream	46.06~107.04m			1.54mrad	60.98m					97keV			
Beampipe within QD0					2m							2.9W	
Beampipe within QF1					1.48m							3.1W	
Beampipe between QD0/QF1					0.23m							36.2W	

CEPC Final Focus Magnets & Cryostat

QD0

CEPC Civil Engineering (Qinhuangdao: 100km, CDR Example)

CEPC Tunnel Cross Sections, Detector and SCRF Regions

IP1 / IP3

IP2 / IP4--SCRF region

CEPC Tunnel in Detector Region

IP1 / IP3

CEPC Civil Engineering

Electron source

Booster and collider ring tunnel

Booster SCRF

Linac to Booster

Collider ring SCRF

Detector hall

CEPC Power for Higgs and Z

	Custom for Illing	Location and electrical demand(MW)						Tabal	
	(30MW)	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)	
1	RF Power Source	103.8	0.15	5.8				109.75	
2	Cryogenic System	11.62	0.68		•	1.72		14.02	
3	Vacuum System	9.784	3.792	0.646				14.222	
4	Magnet Power Supplies	47.21	11.62	1.75	1.06	0.26		61.9	
5	Instrumentation	0.9	0.6	0.2				1.7	
6	Radiation Protection	0.25		0.1				0.35	
7	Control System	1	0.6	0.2	0.005	0.005		1.81	
8	Experimental devices					4		4	
9	Utilities	31.79	3.53	1.38	0.63	1.2		38.53	2
10	General services	7.2		0.2	0.15	0.2	12	19.75	
	Total	213.554	20.972	10.276	1.845	7.385	12	266.032	

CEPC Cost Breakdwon (no detector)

266MW

		L	Location and electrical demand(MW)					
	System for Z	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)
1	RF Power Source	57.1	0.15	5.8				63.05
2	Cryogenic System	2.91	0.31			1.72		4.94
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	9.52	2.14	1.75	0.19	0.05		13.65
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	19.95	2.22	1.38	0.55	1.2		25.3
10	General services	7.2		0.2	0.15	0.2	12	19.75
	Total	108.614	9.812	10.276	0.895	7.175	12	148.772
							C	

The total cost of CEPC~35Billion RMB~5Billion \$ (Accelerator+2 Detectors+Civil+Contigence)

149**MW**

CEPC Cost Breakdown (no detectors)

Without including civil cost

Including civil cost

CEPC Accelerator R&D twowards TDR

CEPC TD Timeline

TDR from 2018-2022

CEPC Accelerator Optimization Design towards TDR

Refine all sub-systems, such as damping ring, booster, collider rings Injection/extract physics and hardwares' design Magnets and other hardwares' errors effects on DA, the advanced close orbit corrections method maintain DA reduction acceptable, keeping the tolerences requirments to reasonable values All connecting transfer lines matching the collider accelerator chain requirements Detector bakgroud reduction, beam-beam for long lifetime Impedance studies including collimators MDI SC magnets' optimazation design Magnets' studies with H, W, and Z all modes Upgrade possibility studies

Close orbit corrections in x and y planes (0.1mm) with magnets' errors

CEPC Collider Ring Dynamic Apertures (w/ errors)

- Dynamic aperture result for Higgs mode
 - Tracking in SAD w/ radiation damping, fluctuation, energy sawtooth and tapering, 145 turns(2 damping times), initial phases=0
 - Totally around 800 random seeds used
 - Horizontal dynamic aperture decreased significantly with errors. But it still fulfils the dynamic aperture requirement of on-axis injection.

 $20\sigma_x \times 23\sigma_y \& 0.018$ w/o errors $11\sigma_x \times 19\sigma_y \& 0.014$ w/ errors

CEPC 650 MHz Cavity Cryomodule

- Structure based on ADS cryomodule. High Q requirement drives new design features (fast cool down and magnetic hygiene).
- Fast cool down rate is supposed to be 10 K/min during 45 K to 4.5 K.
- Ambient magnetic field at cavity surface should be less than 5 mG. Magnetic shielding and demagnetization of parts and the whole module should be implemented for the magnetic hygiene control.

Overall length (flange to flange, m)	8.0
Diameter of vacuum vessel (m)	1.3
Beamline height from floor (m)	1.2
Cryo-system working temperature (K)	2
Number of cavities and tuners	6
Number of couplers	6
Number of RT HOM absorbers	2
Number of 200-POSTs	6
Static heat loads at 2 K (W)	5
Alignment x/y (cavities) (mm)	0.5
Alignment z (mm)	2

1.3 GHz SRF Technology for CEPC Booster

XFEL and LCLS-II type cryomodule, without SCQ. Technology R&D in synergy with Shanghai XFEL (SCLF). No big challenge.

TESLA cavity. Nitrogen-doped bulk niobium and operates at 2 K. $Q_0 > 3 \times 10^{10}$ at 24 MV/m for the vertical acceptance test. $Q_0 >$ 1×10^{10} up to 20 MV/m for long term operation.

XFEL/ILC/LCLS-II or other type **variable power coupler**. Peak power 30 kW, average 4 kW, Q_{ext} 1E7-5E7, two windows.

XFEL/LCLS-II type **end lever tuner**. Reliability. Large stiffness. Piezos abundance, radiation, overheating. Access ports for easy maintenance.

CEPC 650 MHz Cavity Development

- Vertical test result: Q₀=5.1E10@26MV/m, which has reached the CEPC target (Q₀=4.0E10@22.0MV/m).
- Next, the CEPC target will be again improved by N-doping and EP, to increas Q₀ and to reduce further AC power

After N-doping, Q₀ increased obviously at low field for both 650MHz 1-cell cavities.

The civil construction of the EP facility is on going, and the commissioning will be at the end of 2018.

CEPC SRF Technology R&D

CEPC Collider HOM coupler (1 kW CW) by OTIC and HD

CEPC HOM absorber of SiC & AIN (5 kW CW)

High power test of HOM coupler (left) and absorber (right) at room temperature. Up to 100 W transmitted power through the HOM coupler and 1 kW RF power absorbed by the HOM absorber.

Tuner and input coupler (variable 300 kW CW) for CEPC 650 MHz cavity in fabrication

CEPC Booster 1.3 GHz variable double window coupler by HERT (in high power conditioning)

CEPC Collider Test Cryomodule

- Cryomodule with two 650 MHz 2-cell cavities: in fabrication, assemble in 2019
- Beam test with DC photo cathode gun (CW 10 mA) in 2020 at new PAPS SRF

CEPC Key SCRF Technology Breakthrough 2018.9.12

Cavity inner surface reparing system

IHEP EP System

IHEP New SRF Infrastructure

- 4500 m² SRF lab in the Platform of Advanced Photon Source **Technology R&D (PAPS)**, Huairou Science Park, Beijing.
- **Mission** to be World-leading SRF Lab for Superconducting • Accelerator Projects and SRF Frontier R&D.
- **Mass Production:**
 - $-200 \sim 400$ cavities & couplers test per year
 - 20 cryomodules assembly and horizontal test per year. 3 Vertical test 2 Horizoptal test
- **Construction : 2017 2020**
 - \Rightarrow 3 VT dewars, 2 HT caves,
 - ⇒ 500m2 Clean Room

Shanghai city government decided to built Shanghai Coherent Light Facility(SCLF).

- 432 1.3 GHz cavities
- 54 Cryomodules
- IHEP plans to provide > 1/3 of cavities and cryomodules, an excellent exercise for CEPC

N-doping/N-infusion furnace

Clean room

IHEP SCRF New Lab and Progress

2018-09-23, KEK visitors (red)

High Efficiency Klystron Development

Established "High efficiency klystron collaboration consortium", including IHEP & IE(Institute of Electronic) of CAS, and Kunshan Guoli Science and Tech.

- 2016 2018: Design conventional & high efficiency klystron
- 2017 2018: Fabricate conventional klystron & test
- 2018 2019 : Fabricate 1st high efficiency klystron & test
- 2019 2020 : Fabricate 2nd high efficiency klystron & test
- 2020 2021 : Fabricate 3rd high efficiency klystron & test

Mechanical design of conventional klystron

 \Rightarrow 73%/68%/65% efficiencies for 1D/2D/3D

CEPC Collider and Booster Ring Conventional Magnets

CEPC collider ring magnets

China									
Astronotics Department 508			Dipole	Quad.	Sext.	Correcto r	Total		
Institute participates		Dual aperture	2384	2392	-	-			
CEPC magnets mechanical		Single aperture	80*2+2	480*2+172	932*2	2904*2	13742		
designs		Total length [km]	71.5	5.9	1.0	2.5	80.8		
		Power [MW]	7.0	20.2	4.6	2.2	34		
The first and the last segments - s	sextupole comb	<u>vined</u>							

Dipole

Dipole

Booster ring low field magnets

Quantity	16320
Magnetic length(m)	4.711
Max. strength(Gs)	338
Min. strength(Gs)	28
Gap height(mm)	63
GFR(mm)	55
Field uniformity	5E-4

Sextupole

Booster high precision low field dipole magnets-1

One kind of the dipole magnet with diluted iron cores is proposed and designed.

- To reduce weight and cost of the magnet, the cores are diluted both in transversal and longitudinal directions.
- To decrease the influence of remnant field, the oriented low carbon silicon steel laminations with lower coercive force instead of nonoriented laminations will be used to stack the cores of the magnet.

Booster high precision low field dipole magnets-2

Two kinds of the dipole magnets without iron cores called Cos Theta (CT) and Canted Cos Theta (CCT) are proposed and designed.

To increase the excitation efficiency, the shielding cylinder with flatted top and bottom plates will be adopted for CT magnet. And a small canted angle will be used for CCT magnet.

Magnets R&D:-SR Analysis

Total power 870 W/m						
Beam direction	n: left W/m	Beam direction: right W/m				
Al chamber	199	Al chamber	186			
Cu chamber	308	Cu chamber	332			
Dipole	186	Dipole	182			
Lead A	60.6	Lead A	29.2			
Lead B	33.5	Lead B	80.0			
Lead C	46.8	Lead C	18.8			
Lead D	14.3	Lead D	20.4			
Quadrupole	279	Quadrupole	268			
Lead A	37.8	Lead A	36.4			
Lead B	18.1	Lead B	21.7			
Sextupole	179	Sextupole	174			
Lead A	95.1	Lead A	107			
Lead B	60.3	Lead B	43.1			

CEPC Collider Ring Electro-Magnet Separator

An electrostatic separator combined with a dipole magnet to avoid bending of incoming beam (Magnet group is responsible for the design of dipole magnet)

+

	Filed	Effective Length [m]	Gap [cm]	Quantit y
Electrostatic separator	2.25 MV/m	4	11	40
Dipole	75 Gauss	4	7	40

Zhongxin Heavy Industry participates in Elecletric-magnetic seperator design

Vacuum System R&D

First test vacuum chamber

- The vacuum pressure is better than 2 x 10-10 Torr
- Total leakage rate is less than 2 x 10-10 torr.1 /s.

Positron ring

Copper vacuum chamber (Drawing) (elliptic 75×56, thickness 3, length 6000)

NEG coating suppresses electron multipacting and beam-induced pressure rises, as well as provides extra linear pumping. Direct Current Magnetron Sputtering systems for NEG coating was chosen.

NEG coating

NEG coating suppresses electron multipacting (SEY < 1.2) and beaminduced pressure rises, as well as provides extra linear pumping.

•

- The setup of NEG coating has been built, and some experiments have been done.
- The thickness of the NEG films are about 1.4 µm.
- The proportion of Ti, Zr and V is 1: 1.1 :2.5.
- The more tests will be done to improve the performance of

CEPC Linac Injector R&D

• S-band accelerating structure design

-Accelerating structure design

Accelerating structure under cold test

• Positron flux concentrator design

The mechanical design of FLUX concentrator

The finished FLUX concentrator

solid-state pulsed power generator

The output of 10kA measurement

CEPC Beam instrumentation

The electronics of beam position monitor

The result of DDD tune system

The BPM of storage ring

The BPM of Booster

The BPM of Linac and BT

CEPC IR Superconducting magnets

Superconducting QD coils

Iron option for QD0 is investigated.

QF1 Integral field harmonics with shield coils $(\times 10^{-4})$

n	$B_n/B_2@R=13.5mm$
2	10000
6	1.08
10	-0.34
14	0.002
	n 2 6 10 14

Superconducting QF coils

There is iron yoke around the quadrupole coil for QF1. Since the distance between the two apertures is larger enough and there is iron yoke, the field cross talk between two apertures of QF1 can be eliminated.

Room-temperature vacuum chamber with a clearance gap of 4 mm

Magn et	Central field gradient (T/m)	Magnetic length (m)	Width of Beam stay clear (mm)	Min. distance between beams centre (mm)
QD0	136	2.0	19.51	72.61

CEPC IR Superconducting magnets mechanical design

CEPC MDI Mechanical Study

Huanghe Company, Huadong -Shenyang Huiyu Company participats in CEPC MDI mechanical connection design China Astronotics Department 508 Institute participates in CEPC MDIsupporting design

CEPC Mechanical Studies

China Astronotics Department 508 Institute participates in CEPC movable collimators mechanical design

Schematic of movable collimators

Schematic of transport vehicle of magnets

Experimental Verification Plan in SXFEL-TF for CEPC Plasma Injector Scheme

A dedicated budget of 10Million has been alocated by IHEP

Electron (SXF	EL-TF)				
Energy	840MeV				
Energy spread(rms)	≤0.1%				
Norm. Emittance(rms)	≤1.5mmmrad				
Length(FWHM)	≤1ps				
Charge	0.5nC				
Repetition rate	10Hz				

Future Work: from 10kW@4.5K cryosplant to 18kW@4.5K cryosplant

Proposed scheme for 10-12kW@4.5K Cryo-plants for CEPC, ADS, HIAF, etc.

CEPC siting

3

- 3) Shenshan, Guangdong Province(Completed in 2016)
- 4) Baoding (Xiong an), Hebei Province (Started in August 2017)
- 5) Huzhou, Zhejiang Province (Started in March 2018)
- 6) Chuangchun, Jilin Province (Started in May 2018)

CEPC accelerator TDR national, international collaboration, with industries (CIPC) and TDR management platform

CEPC TDR Phase Accelerator Management System (Platform)

CEPC accelerator TDR national, international collaboration, and with industries (CIPC)

Established collaborative management system of CEPC, CIPC,IB Members and International Collaborators:

- ✓ Among CEPC subsystems;
- **CEPC-CIPC (industries)**
- CEPC-IB members
- CEPC-International Collabrators

Joint established with Huadong Engineering Coorpeation (华东勘探设计研究院有限公司)

← ← http://10.215.136.221:81/												₼☆©(9				
CEPC	C-SPPC	西年					文件	持灭 文档	视图	工具 帮助							
8	文档									e 🗶 🗖							
		CEPC	-SPPC					名称			描述		文件名		创建时间		
			1-PreCDR						<u>PC</u>						2018/10/2	6 17:46:47	
			2-CDR														
			3-TDF	🏞 http://	10.215	.136.2	21 :81/defau	lt.aspx?default=ECOb	ojects%7	cBentley_DMS%7cDMSFol 👂	🗸 🖒 🎀 ProjectWise	e 网页服务器	×			- t] × ·☆ © ♡
			× ●转	换 ▼ ¹² 选排 ■ <mark></mark>	¥ CEPC-SI	PPC				名称		描述		文件名		创建时间	^
				1	1	1-PreC	DR			1-功率源		负责人周祖胜				2018/11/7 9:50:3	7
				(2	2-CDR				2-超导磁体		负责人徐庆金				2018/11/7 9:51:0	6
						<u>3-TDR</u>				3-低温系统		负责人-李少鹏				2018/11/7 9:51:3	8
		m	-		•		<u>1-CEPC加速器</u>	2		4-真空系统		负责人董海义				2018/11/7 9:52:1	0
					8		2-华东院成果			5-微波系统		负责人张敬如				2018/11/7 9:53:3	3
		88	保存的				3-CIPC			6-磁铁系统		负责人康文				2018/11/7 9:53:5	7
•	3 组性						<u>1-功率</u>	源		7-电源系统						2018/11/7 9:57:3	4
		小搜索						北京北广科技股份有限		9-辐射系统						2018/11/7 10:02	18
								成都凱腾四方数字广播		10-東測						2018/11/7 10:02	56
	000							合肥雷科电子科技有限		12-超导高频						2018/11/7 10:03	57
\pm	þ	([])	e					湖北汉光科技股份有限		14-准直						2018/11/7 10:04	13
								昆山国力电子科技股份		15-探測器1		负责人欧阳群				2018/11/7 10:04	37
							2-超易	磁体		16-探测器2		负责人欧阳群				2018/11/7 10:05:	57
							3-低温	系統	-	17 Hzt						2010/11/17 10:00	

CEPC Industrial Promotion Consortium (CIPC) Collaboration Status

Established in Nov. 7 , 2017 CIPC Annual Meeting, July 26 , 2018

- 1) Superconduting materials (for cavity and for magnets)
- 2) Superconductiong cavities
- 3) Cryomodules
- 4) Cryogenics
- 5) Klystrons
- 6) Vacuum technologies
- 7) Electronics
- 8) SRF
- 9) Power sources
- 10) Civil engineering
- 11) Precise machinary.....

Now:

Please attend the CIPC parallel session to learn more details! **Recommend**

-Huanghe Company, Huadong Engineering Cooperation Company, on CEPC civil engineering design, site selection, implementation... -Shenyang Huiyu Company on CEPC MDI mechanical connection design -Zhongxin Heavy Industry on Elecletricmagnetic seperator design -China Astronotics Department 508 Institute on CEPC MDI supporting design and CEPC magnets mechanical designs... -Kuanshan Guoli on CEPC 650MHz high efficiency klystron -Huadong Engineering Cooperation Company, on CEPC alignement and installation logistics...

CIPC Parallel Sessions (recommend)

Parallel session I: CIPC I - B410 Main building (16:00-18:00)

- Conveners: Mr. Gao, Jinlin

time [id] title

time [id] title	presenter
16:00 [130] CEPC siting, civil engineering and implementation (秦皇岛)	XIAO (肖豫), Yu
16:20 [131] CEPC civil engineering and E-management	黄可
16:40 [132] CEPC 650MHz/800kW Klystron	王少哲
17:00 [133] CEPC MDI assembly design	杨奇
17:20 [134] 508所关于CEPC相关设计与研究	何绍栋

17:40 [135] CEPC electrostatic-magnetic deflector

王智敏 (副院长)

Parallel session III: CIPC III - B410, Main building (10:30-12:30)						
- Conveners: Cai (蔡传兵), Chuanbing						
time [id] title presenter						
10:30	[142] SC cavity production	何景山				
10:50	[143] CEPC,科学前沿中的技术挑战与发展机遇	戴旭文				
11:10	[144] The Preparation for CEPC from Ningxia OTIC	赵红运				
11:30	[145] 超导材料	宋建				
11:50	[147] CEPC雄安	向亮				

Summary

- CEPC Accelerator CDR has been completed and released with all systems reaching the CDR design goals with new ideas beyond CDR
- CEPC hardware design and key technologies' R&D progress well with financial funds towards TDR to be completed in 2022
- CEPC siting and engineering implementation progress well
- CEPC TDR Phase Accelerator Management System (Platform) has been established
- International collabotaion and collaboration with indusries progress well
- Young generations played a key role during CEPC CDR and they are the key forces to realize the goals

Thank you for your attention

Thanks go to CEPC study group colleagues, CIPC member industries and international collaborators