

### **PAPS** introduction

--what infrastructure is needed to support SRF accelerator

### Feisi He Institute of High Energy Physics (IHEP)



- PAPS project overview
- The SRF facility what is needed?
- Future project that may need PAPS



- PAPS project overview
  - RF system
  - Cryogenic system
- The SRF facility what is needed?
- Future project that may need PAPS



# PAPS project overview

- "Platform of Advanced Photon Source Technology R&D", to provide infrastructure for construction of future project.
- Budget: 500M CNY funded by Beijing Gov.
- Construction: 2017.5-2020.6
- Consist of 7 systems:
  - RF system
  - Cryogenic system
  - Magnet technology
  - Beam test
- X-ray optics
- X-ray detection
- X-ray application







### PAPS-RF system

- The PAPS-RF system has two targets :
  - Build a SRF facility
  - Conduct R&D on cavities and ancillaries
- The SRF facility is biased on mass production for SRF projects
  - Post-processing, clean assembly, VT/HT/conditioning of cavities, couplers, and cryomodules.
  - Compatible of 166MHz, 325MHz, 500MHz, 650MHz, and 1.3GHz
  - 200-400 cavities (couplers) per year
  - ~20 cryomodules per year
  - Support R&D on new material and new technology
  - Total area of 4500 m<sup>2</sup>
- Cryogenic system: 300W @ 2K





### Cryogenic system

- The cryogenic system
  - 2.5KW@4.5K and
    300W@2K LHe system
  - 210m<sup>3</sup>/h gas recycle and 100m<sup>3</sup>/h gas purify capability
- Supply 2K LHe to:
  - 3 vertical test (VT) dewars
  - 2 cryomodule test stations
  - 1 beam test facility





- PAPS project overview
- The SRF facility what is needed?
  - SRF related components in SRF accelerator
  - Cavity post-processing
  - Cavity testing (with HOM couplers)
  - Cavity-string assembly
  - Cryomodule assembly
  - Coupler assembly and conditioning
  - Cryomodule test
  - HT cryomodule for new cavity R&D
- Future project that may need PAPS



Optic inspection, pre-tuning

### SRF related components in SRF accelerator

Cryogenic

300W@2K

VT dewars

4 cav / week

M / 2weeks

Cleanroom

8 cavities, 8 couplers, & 1 CM every 2 weeks

- Basic unit: cryomodule
  - SRF cavity (helium vessel, magnetic shielding)
  - Main coupler (or so called FPC)
  - Tuner (sometimes with piezo)
  - HOM coupler (or damper)
- Every element has to be tested before assembly
- The whole cryomodule has to be tested before operation



PAPS project overview

- SRF related components in SRF accelerator
- Cavity post-processing
- Cavity testing (with HOM couplers)
- Cavity-string assembly
- Cryomodule assembly
- Coupler assembly and conditioning
- Cryomodule test
- HT cryomodule for new cavity R&D
- Future project that may need PAPS



Ultrasonic

### Cavity post processing

- Typical infrastructure for post-processing:
  - 18 MΩ ultra-pure water (UPW) system
  - BCP and/or EP system
  - Furnace
  - Ultrasonic basin
  - Clean-room ISO4-7
  - Vacuum system





20181210, ASSCA2018, Beijing, China



### PAPS cavity clean-room





PAPS project overview

- SRF related components in SRF accelerator
- Cavity post-processing
- Cavity testing (with HOM couplers)
- Cavity-string assembly
- Cryomodule assembly
- Coupler assembly and conditioning
- Cryomodule test
- HT cryomodule for new cavity R&D
- Future project that may need PAPS



# PAPS vertical test dewars

- The cavity is immersed into LHe during a vertical test, to measure gradient and Q value
- 2 large dewars of ID=1.25m, 4 of 1.3GHz cavities at a single test
- 1 small dewar of ID=0.8m for R&D, T-mapping, second sound equipped.
- 8~10 of 1.3GHz 9-cell cavity tests per week





PAPS project overview

- SRF related components in SRF accelerator
- Cavity post-processing
- Cavity testing (with HOM couplers)
- Cavity-string assembly
- Cryomodule assembly
- Coupler assembly and conditioning
- Cryomodule test
- HT cryomodule for new cavity R&D
- Future project that may need PAPS



# Cavity string and cryomodule assembly

- Requirement:
  - Well arranged large space
  - Dedicated toolings
- Key issue: remain the cavity inner surface extremely clean







PAPS project overview

- SRF related components in SRF accelerator
- Cavity post-processing
- Cavity testing (with HOM couplers)
- Cavity-string assembly
- Cryomodule assembly
- Coupler assembly and conditioning
- Cryomodule test
- HT cryomodule for new cavity R&D
- Future project that may need PAPS



### PAPS FPC cleanroom



20181210, ASSCA2018, Beijing, China



PAPS project overview

- SRF related components in SRF accelerator
- Cavity post-processing
- Cavity testing (with HOM couplers)
- Cavity-string assembly
- Cryomodule assembly
- Coupler assembly and conditioning
- Cryomodule test
- HT cryomodule for new cavity R&D
- Future project that may need PAPS



## Cryomodule test

- Radiation during test, so test in test-stand is essential before tunnel installation
- Time consuming (4-5 weeks per CM), thus 2-3 test stands are needed









PAPS project overview

- SRF related components in SRF accelerator
- Cavity post-processing
- Cavity testing (with HOM couplers)
- Cavity-string assembly
- Cryomodule assembly
- Coupler assembly and conditioning
- Cryomodule test
- HT cryomodule for new cavity R&D
- Future project that may need PAPS



# HT cryomodule for new cavity R&D

- Easy to assemble and remove cavities to the CM
- To test all SRF, cryogenic, and mechanic parameters of the whole set of cavity, coupler, tuner, and LLRF





PAPS project overview

#### • The SRF facility – what is needed?

Future project that may need PAPS



### Future project: HEPS

- High Energy Photon Source will be built in Beijing by IHEP from 2018 to 2024
- Budget: 4.8B CNY

| A CARLES AND A CAR | Booster                 |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Circumference           | 432 m          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Beam energy (inj./ext.) | 0.3 / 6 GeV    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Beam current            | 10 mA          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Energy loss per turn    | 4.6 MeV        |
| A CONTRACT OF THE AND THE ADDRESS OF | Beam power              | ~50 kW         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Storage ring            |                |
| and the second s | Circumference           | 1295.6 m       |
| Company of the second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Beam energy/current     | 6 GeV / 200 mA |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Energy loss per turn    | 2.5 MeV        |
| the second secon | Beam power              | 500 kW         |
| AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bunch length (inj./op.) | 2.8/32 mm      |



20181210, ASSCA2018, Beijing, China



### Future project: CIADS

- Approved by Chinese government in Dec. 2015
- Budget: >1.8B CNY
- Proton CW linac > 250MeV
- In collaboration of IMP, IHEP, and many other institutes





# Future project: CIADS (2)

- Current optics design:
  - HWR009
  - HWR019
  - 56 of Double spoke  $\beta_0=0.42$







## Future project: CSNS upgrade

- Target of the CSNS upgrade:
  - Beam power 500kW (1.6GeV)
  - Linac length <85m</li>
  - Peak current 40mA
  - Pulse width 1.25ms
  - Repetition rate 25Hz
- Double-spoke( $\beta_0$ =0.50) + 5-cell elliptical ( $\beta_0$ =0.65) + RT quadrupole
- 38 SRF cavities, linac 61.7m + matching 2m, 303MeV at exit
- Safety margin on cavity EP: 15% 25%, 315MeV with 10% Pf margin





# Future project: Shanghai-XFEL

- Approved with 8B CNY, to be built in 7 years
- Dominated by Shanghai-Tech University and Sinap at Shanghai
- 8GeV CW Linac, with 600 of 1.3GHz TESLA cavities in 75 cryomodules

8 cavities in one cryomodule





### Future project: CEPC

- Proposed by IHEP, pre-research in progress
- Circular electron-positron collider at 2 x 120GeV
- e+e- Higgs (Z) factory for precision measurement of the Higgs boson (and the Z boson)
  - Ecm~240GeV, luminosity ~2 × 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>, two detectors, 1M ZH events in 10yrs





# Future project: CEPC (2)

- ~160 of 1.3GHz TESLA cavities and 336 of 650 MHz 2-cell cavities are needed. 2 or 6 cavities in one cryomodule.
- 5-cell cavities at 650MHz are possible according to optics design
- Operation specification:
  Q<sub>0</sub>>2e10@E<sub>acc</sub>=16MV/m
- VT specification: Q<sub>0</sub>>4e10@E<sub>acc</sub>=22MV/m

