Superconducting Accelerator Magnets

Reference: Yukikazu Iwasa < Case Studies in Superconducting Magnets >

Problem 1: A superconducting loop
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Fig. 1.8 Circuit of a superconducting coil inductively coupled
to another loop that is connected to a current source.

This problem demonstrates that it is impossible to induce a “persistent” current
in a closed superconducting loop, coil, or disk by means of an external current
source. This may be obvious to some; it is proven here using a circuit model.
Figure 1.8 shows a superconducting loop coupled inductively to another loop that
is connected to a current source. The superconducting loop, with current I,(t), is
represented by an inductor of self inductance L,. The loop with the current source
of I(t) is represented by an inductor of self inductance L and a resistor of resistance
R. The two circuits are coupled inductively through a mutual inductance M.

a) Write two circuit equations, relating voltage in each of the two circuits.

b) Solve the above voltage equations for I;(¢) and show that it is not possible to
establish a current in a closed superconducting circuit with a current source
whose current I(t) is zero at the beginning and at the end, i.e., I(t=0) =
I(t=00)=0. The closed superconducting circuit may be a magnet with its
terminals joined by superconducting splices, a bulk disk or a stack of disks,
or a disk with a hole in the middle or a stack of such disks.



Problem 2: The field far from a cluster of four dipoles

This problem considers the field far from a cluster of four ideal dipoles, 1-4, ar-
ranged as shown in Fig. 2.7, in which the direction of each dipole is indicated by
the arrow within a circle. The center-to-center distance between two opposing
dipoles is 204. The field of each jth dipole of zero winding thickness, diameter
21y, and overall length /4 in the y-direction, at a radial location (r;) far from the

dipole (r;>>£4) may be modeled as a spherical dipole field, B}-:
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where 75 is measured from the center of each dipole and 1J; in each dipole is defined
such that the field inside the winding points in the rj-direction when 7; =0°. Figure
2.7 indicates the direction of the field inside each dipole. Also defined in Fig. 2.7
are r-f coordinates and z-z coordinates common to all the dipoles. Note that for
7> 04, we have 1 =0+180°, 75 =0—-90°, ¥J3=6, and 9, =60+90°.

Show that an approximate expression for the far field (B for r/dq > 1) of the
combined system is given by:
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Neglect end effects of each dipole, i.e., consider only the plane y=0.
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Fig. 2.7 Cross-sectional view of a four-dipole arrangement. The arrow
in each dipole indicates the field direction inside the winding.



Problem 3: Circulating proton in an accelerator

The LHC, the world’s largest “atom smasher” (protons), has ~1250 dipole mag-
nets, each ~14m long and generating a field of 8.3T within a diameter of 56 mm.
The LHC will have two counter-circulating beams of protons, each accelerated to
an energy (Ep) of 7TeV.

a) The oblong-shaped main ring comprises two half circles of radius R, =2.8 km,
connected by 4.5-km nearly straight sections for a proton with an energy
E, of 7TTeV. The dipoles occupy the ring’s two half-circle sections. Show
that a dipole field of 8.3'T generates a Lorentz force, Fy, that balances the
centripetal force, Fcp. on a 7-TeV proton in the circular section. Assume that
the proton speed is equal to the speed of light. Note: 1eV= 1.6x10"19J.

b) Show that the proton speed at an energy of 7TeV is nearly the speed of light.



Problem 4: Criterion for flux jumping

This problem deals with the derivation of the critical conductor size above which
flux jumping will occur. Flux jumping was once a major source of instabilities in
the first superconducting magnets of engineering significance in the early 1960s
[5.10]. Flux jumping is a thermal instability peculiar to a Type II superconductor
that permits the magnetic field to penetrate its interior. A time-varying magnetic
field, H e, at the conductor surface induces an electric field E in the conductor,
which interacts with the supercurrent (density .J.). This E.J, interaction heats
the conductor. Since J,. decreases with temperature, the field (flux) penetrates
further into the conductor, generating more heat, which further decreases .J.. The
field penetration and temperature rise can cascade until the conductor loses its
superconductivity. This thermal runaway event is called a flux jump.

a) Using the Bean model and computing the E - J, interaction over the positive
half (0 < 2 < a) of the slab, show that an expression for the dissipative energy
density, e4 [J/m?], generated within the slab when the critical current density
J. is suddenly decreased by |AJ,| is given by:
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Note that the entire slab is in the critical state with its surface (+a) exposed
to an external field of H, 7.

b) Derive Eq. 5.37 by computing the Poynting energy flow into the slab at = a
and equating it with the change in magnetic energy storage and dissipation
energy &£y in the positive half of the slab.

c) To relate AJ, to an equivalent temperature rise in the conductor, we may
assume a linear temperature dependence for J.(7T'):
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where J,., is the critical current density at the operating temperature T,,. T,

is the critical temperature at a given magnetic induction B,. From Eq. 5.38,
AJ, in Eq. 5.37 may be related to an equivalent temperature rise AT":

AT &
AJ, = _Jco (m) (039)

Now, by requiring that ATy =e4/ Cs < AT, where C, is the superconductor’s
average heat capacity [J/ m? K] in the range from T;, to T,, show thermal
stability implies a critical slab half width a. of:




Problem 5: Magnetization of conductors

This problem illustrates the effect of filament size and twisting on magnetization.
In the late 1960s, three NbTi composite superconductors of equal volume were
subjected to magnetization measurements [5.12]. Conductors 1, 2, and 3, respec-
tively, are: twisted multifilamentary wire with a twist pitch length £p;; twisted
multifilamentary wire with a twist pitch length fp2 > £1: and a monofilament.

Figure 5.21 presents three magnetization curves, labeled A, B, and C, for the
three NbTi composite conductors. Each conductor was subjected to field pulses
indicated by arrows in the figure. Traces A, B, and C do not necessarily correspond
to Conductors 1, 2, and 3, respectively. Note that Traces B (B;, Bo, B3) show a
dependence on field sweep rate; Trace C is independent of field sweep rate; Trace
A also is independent of field sweep rate, but shows “partial” flux jumps induced
by the field pulses.

a) Identify which magnetization trace corresponds to which conductor.

b) Estimate the ratio of filament diameter in the monofilament conductor to
that in the multifilament conductors.

c) Estimate the value of ;5. Take J.dy = 4x 104 A /m for Conductors 1 and 2.
Also comment on £p;.
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Fig. 5.21 Magnetization traces for Conductors 1, 2, and 3 [5.12].



Problem 6: Composite superconductor — circuit model

For a composite superconductor in which the superconductor is characterized by
Eq. 6.25a, the equivalent circuit of Fig. 6.5b is modified, as shown in Fig. 6.11.
It consists of an ideal voltage source (zero internal resistance) Vg in series with a
differential resistance, Rgjy =0V,/01,, where V; is the voltage across the super-
conductor. As in Fig. 6.5b the matrix is represented by a resistor R,,.

a)

b)

c)

d)
e)

Show, with R.=V,/I., that Rs=V,/I; and Rgj; are given by:

I (n—1)
Rs = R, (1_) (6.26a)
[
(n—1)
Ry =nR, (I—*") (6.26b)

Note that Rgif =nRs. For a superconductor of n=1, its V-I curve becomes
similar to a regular resistor’s and, as may be expected, Ry=R.= Rgjs.

For a 10-cm long and 1-em wide composite superconductor with 7,=100 A at
773K, V=10 uV, n=15, a matrix resistance of R,, =0.3 m{2, and assuming,
for simplicity, that the composite, cooled by boiling nitrogen, always remains
at 77.3K, compute: 1) I, and Ig; 2) total voltage across the 10-cm long
composite; 3) total Joule dissipation in the composite; 4) Joule heat flux
over the composite cooling surface area of 10cm? (10cmx1cm); and 5) R,
at transport currents, Iy, of 90 A; 100 A: 120 A; 150 A; 300 A; and 500 A.

Discuss the assumption of constant temperature of 77.3 K and discuss, qual-
itatively, how results are modified if the composite superconductor’s temper-
ature increases with increasing Joule dissipation.

Repeat b), except with n=30.

Repeat b), now with n=60.
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Fig. 6.11 Circuit model for a composite superconductor with a superconductor of the V;
vs. I characteristic (Eq. 6.25a), shunted by a matrix resistance R,,. The superconductor
consists of Vs, an ideal voltage source, in series with Rg;r, the differential resistor.



