Solution to Problem 1

a) Two voltage equations are:
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dI(t) dI(t) _
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b) Solving for I¢(t) from Eq. S2.1b. we obtain:

L(t) = —i—‘rrm 3-8 (52.2)

Because I(t=0)=0. C' =0, and because I{t=0)=I(t=20)=0. I(t) # 0 only
when I(t) # 0. That is, a “virgin” closed superconducting circuit cannot remain
energized alone, with an external current source shut off.

Solution to Problem 2

For r > d4. rj of each dipole may be given in terms of r and 6:

ry =1 — dgsinf (S4.1a)
ro =1+ dgcosf (S4.1b)
ra = r+ dqgsinf (S4.1¢)
rqy =1 —dqcosl (54.1d)

With Eq. 54.1 into Eq. 2.51 for each dipole and 1; expressed in terms of 6:
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For r = d4 the denominator of each term may be expanded; to 1** order in d§4/r

Eq. 54.2 becomes:
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Combining each field given by Eq. S4.3, we obtain:
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B =By + By + By + By = =45 (— sin 267, + § cos 207p) (2.52)

Note that |B| decreases x 1/r4 rather than x 1/r3, as would a single dipole.



Solution to Problem 3

a) The centripetal force. Fep, on a circulating proton (mass Mp) is balanced by
the Lorentz force. Fy. The direction of B. is chosen to make Fp point radially
inward because F, always points radially outward. The two forces are given by:

B o2 M.c2
= 1‘;;‘ 7 o~ lg“ 5 = % 7 (S12.1a)
Fi = —qcB, T, (S12.1b)
Solving for R, from Fcp — FL = (), we obtain:
Ep B
R = P (512.2)

From Eq. 5§12.2, we have:

(1.6 10719 J/eV)(Tx 1012 V)
(1.6x10-19C)(3x 108 m/s)(8.3T)
~2.81x%10°m ~ 2.8km

R, =

This is less than the actual radius of LHC, which is slightly over 4 km. Note that in
the above computation it is assumed that the entire ring is occupied by dipoles: in
fact the occupancy rate for the dipoles is ~60%—quadrupoles, detector magnets
occupy most of the rest. The average dipole field along the LHC ring is thus ~5T,
leading to a computed radius of ~4km. Of course, a dipole field of B, =15T,
for example. will nearly halve the ring diameter; superconducting dipole magnets
with a field in the range 10-16 T are not out of the question [3.54-3.56].

b) The proton mass M, traveling at speed v, is related to its rest mass, M,
(1.67x 1027 kg), by:

M, = o M. (512.3)

o

Solving for v/e from Eq. S12.3, we have:

v | M2 A 4104

Because v/c is very close to 1, Eq. S12.4 may be approximated by:

v M L (167 10-27 kg)2(3x 108 m/s)*
c 2E2  2(L6x10719J/eV)2(7x1012eV)?
~1-9x1077

That is, the proton velocity is within nine parts per billion of the speed of light.



Solution to Problem 4

a) Because of symmetry about r = 0, we
shall consider only one half of the slab, between H.o(z)
r =0 and = a. As illustrated in Fig. 5.18,
the solid line corresponds to Hgy(x), which
gives the initial field distribution within the
slab, with JJ=.J,. The dotted line corresponds
to Hgo(x) for the slab carrying J.—|AJ,|. Note
that the field at the surface is H, in both cases.
We thus have:

Hg(z) =He + Jo(x — a) (52.1a)

Heo(x) = He + (J. — |AJ.|) (2 — a) (S2.1b)
Because there is a change in magnetic field 0 “
within the slab, an electric field E is gener- Fig. 5.18 Field profiles.
ated, which from Faraday’s law of induction is
given by:

” AH,(x)7, -dA
fE .d§= —po[¢ (52.2)

From symmetry we have E(x = 0) = 0 and E points in the z-direction. AH4(x)
is given by:

AH,(z) = Hg(x) — Hgy ()
= |AJ,|(a — x) (52.3)

Combining Eqgs. 2.2 and 52.3, we obtain:
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Falz)=js |AJQI/ (a —x)dx
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Dissipation power density, p(x), is given by E.(x).J,; the total energy density per
unit length dissipated in the slab or per unit slab surface area in the y-z plane, &,
[J/m?], is given by:

a
Es :/ pla) At dx
0
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T toJe|AJ,|a
= pode|AJe| | (az — =) da = ‘—L‘”'— (52.5)
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The average dissipation energy density, €4, is given by &4 /a:
kAL la?
o = HoJelAJela” (5.37)
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b) The Poynting energy flux [J/m?] in the y-z plane into the slab (in the —a-
direction) at x = a is equal to the change in magnetic energy storage flux AFE,,
[J/m?] and dissipation energy flux £ in the slab. Thus:

f Sp(a)dt = AEm + &, (52.6)

We can verify the direction of S by computing S=ExHatz=a Atz =a,
H=H, 7y: from E.(z) derived in Eq. 52.4:

|AJ,|a?
E, = Rz S2.9
2(a) = po—3 (52.7)
Thus: AL " . |A} | 5
.4 L “ - iy . e g (t - .
S(a) = Ho—as X Hety = Po—oAr e (52.8)

As expected, g(a) points in the —a-direction; energy indeed flows into the slab.

Thus:

LA,
fs (a) dt = pg# (52.9)

The difference in magnetic energy flux AE,, in the slab is given by:

—id f [H2,(z) — H? (z)] da (52.10)
po[ {[He + (Je — |ATL))(z — @)]? — [He + Je(z — a))?} dz

*“"f[_)g |AT,|(z — a) — 2J|AT,|(z — a)? + |AT]*(z — a)?] dx

Neglecting the |A.J.|? term in the above integral, we obtain:

H,|AJ.|a? J,|AJ.|a®
A = o ( el - ela” _ Jel 3"|“ ) (52.11)
From Eq. 52.6, we have:
Es ———fSI(a.) dt — AE, (52.12)
Combining Eqgs. 5§2.9, 5§2.11, and 52.12, we obtain:
H,|AJ,|a? H.|AJ.a®  J.|AJg|a®
Eg = po—ttl® _  (ZSET _ LD
2 2 3
3
= ““’M (52.13)

Equation S2.13 leads directly to Eq. 5.37

. €¢ - poJclAJclﬂg
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c) Asgiven by Eq. 5.38, J.(T) is a decreasing function of temperature. We thus

have: A
AT, = —Js 5:39
(&) s
From Eq. 5.39, we have:
J(. AT
Ji| = 52.14
AT = T T T (52.14)

Replacing .J, with .J,, in Eq. 5.37 and combining it with Eq. S2.14, we obtain:

tod2 AT a?
TP ol (52.15)
3(TC & Top)
Note that ey is proportional not only to AT but also, more importantly, to a.
Under adiabatic conditions, the dissipation energy density ey increases the super-
conductor’s temperature by ATy, given by:

AT, =22 >0 (52.16)
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C, is the superconductor’s average heat capacity [J/m*K] in the temperature
range from T,, to T,. Combining Eqs. S2.15 and 52.16, and requiring AT, < AT
for thermal stability, we have:

AT, Ho Jc2° a?
L=

(52.17)

For a given superconducting material and operating temperature, a is the only
parameter that can be varied by the magnet designer to satisfy Eq. $2.17. That
is, thermal stability can be satisfied only if the slab half-width a is less than the
critical size a., given by:

3Cs(Te — Top)

5.40
HodZ, o

p =

Equation 5.40 is applied to compute approximate values of a, for NbTi (LTS) op-
erating at 4.2 K and YBCO (HTS) oper atmg at 77.3 K. Table 5.3 lists approximate
values of parameters appearing in Eq. 5.40 for both superconductors.

We may conclude that for a circular filament of NbTi, a,=140 gm means a critical
diameter of ~300 pum (Eq. 5.29) and a coated YBCO tape of width 8 mm.

Table 5.3: Application of Eq. 5.40 to NbTi and YBCO

Superconductor | T,p [K] T. [K] Jey [A/m?] || C. [J/m*K] | a.[mm)]

NbTi 4.2 9.8 2x10° 6x10° 0.14
YBCO 77.3 03 2x 109 2x 108 4




Solution to Problem 5

a) Note that Traces A and C are independent of field sweep rate and that the
corresponding magnetization—an indication of filament diameter—is much greater
for Trace A than that for Trace C. We therefore conclude that Trace A is for
Conductor 3 (monofilament) and that Trace C is for Conductor 1 (£,;). That
leaves Trace B for Conductor 2 (£,3). (Remember that each conductor has the
same volume of NbTi superconductor, and thus its measured magnetization should
be directly proportional to filament diameter.)

b) The ratio of magnetization width, (M(H, 1) — M(H, |)) of Conductor 3
(monofilament, Trace A) to that of Conductor 1 (Trace C), is roughly 10 for p.H,
below ~1T (10kilo-oersted). Therefore, we conclude that the filament diameter
ratio is roughly 10.

c¢) Because a field sweep-rate of 900 oersted/sec ( fto Ho. = 0.09 T/s) makes the
magnetization of Conductor 2 (Trace Bj) nearly equal to that of Conductor 3
(Trace A), we may conclude that this sweep rate makes Conductor 2’s filament
twist pitch length fp; critical. Thus from Eq. 5.44:

p o 9 2{)cut}c(£f
! HoHosz

With pey = 2x10710Q m; Jeds = 4% 10? A/m; and ,uc,Hoz = 0.09T/s, we obtain:

¢ 5 [(2)(2x107190m)(4x 10 A/m)
s i 0.00T /s

2.7x1072m = 27 mm

Il

This value is close enough to the actual twist pitch of 10 mm. Because the magneti-
zation of Conductor 1 (Trace C) at a sweep rate of 320 oersted /sec is considerably
smaller than that of Conductor 2 for the same field sweep rate, we conclude that
fp1 is significantly shorter than po.



Solution to Problem 6

a) From the definition of R, and using Eq. 6.25a for Vi, we have:

% WlEY  WfaANY
Bi=—re= =) =—]= S3.1
I, I (fc) I, (fc) ( )
With R.=V,/I., Eq. $3.1 becomes:
I (n—1)
R; =R, (:,f) (6.26a)
Rais represents the superconductor’s differential resistance at I, hence:
oV, aV, I\
Rais = oL ~ L (I_c) (53.2)
i (n—1)
Raif = nR, (I—s) (6.26a)

The partial differentiation is performed in Eq. S3.2 because in realistic situations
the temperature dependance of 1., i.e., I.(T"), must be included in the analysis in
the range I, > I, where the composite is expected to be heated, here above 77.3 K.
b) The circuit must satisfy the following current and voltage equations:
I,=1,+1, (53.3a)

I n

Vm = RmIm = V:e = Vc (I_s)

c

(S3.3b)

As an illustration, let us compute I,, for I; = 90 A. From Eq. S3.3a, we have:
I,=90 A —1I,,. Inserting this into Eq. 53.3b, we obtain:
90 A — I, [A]\*®
100 A )
From Eq. S$3.3¢: I,,=0.00686 A and hence I,=289.99314 A.

XTI [A] = 10-5V( (53.3c)

The total power dissipation in the composite superconductor, P,q, is given by:
Pea = BRIy = Vily (53.4)

The Joule dissipation flux, gjeq is given simply by P.4 divided by the composite’s
total cooling surface, here 10 cm?.

Table 6.5a gives a summary of solution to b).

Table 6.5a: Summary of Solution to b) (n=15)

LAl Im[A] Is [A] RIm [V] P.a[W] |gjea[W/em®]| Ruai [
90 0.00686 | 89.99314 | 2.06x107% | 185x107% | 18.5%107% [0.343x 107
100 0.0332 99.967 | 9.95x107% | 995x107° | 99.5x107°® | 1.49x 107
120 0.483 119.517 | 145x107% | 17.4x1073 | 1.74x1072 | 18.2x10~%
150 7.07 14293 | 2.12x1073 | 318x1073 | 31.8x1073 | 223x107°
300 126.75 173.25 | 38.0x1073 11.4 1.14 3.20x10~3
500 315.88 184.12 | 94.8x1073 474 4.74 7.72x1073




c) Even when the composite is well-cooled by boiling cryogen, its temperature
must rise to transfer Joule dissipation to the cryogen. With liquid nitrogen boiling
at 77.3 K, this rise, which increases with heat flux, can be as high as ~10K in
the nucleate boiling range. The most obvious temperature-dependent parameter
in Eq. 6.25a is 1., which decreases with increasing temperature; the temperature-
dependence of n is not well-documented. LTS or HTS—in an analysis of this
nature, we may assume n to be constant. In the equivalent circuit, R,,. if it
is a matrix of pure metal, remains constant at low temperatures and increases
nearly linearly with temperature beyond ~30K. I, on the other hand may be
assumed to decrease linearly with 7. The (Ig/1.)" term thus increases sharply with
temperature as does, consequently, Joule dissipation. Next, in PROBLEM 6.4, we
will perform a circuit analysis in which /. and R,, are T-dependent.

d) Results for n=30 are summarized in Table 6.5b.
e) Table 6.5b also gives a summary of results with n=60.

Note that for I; >I,=100 A the smaller the n, the smaller are I,,,. Ry, [,, =Vs(1s),
Ped. gjed, and Rgjs: for I; <100 A, the opposite is true. This could pose practical
problems in a real situation. For instance, at I; =150A, R,,[,, =2.12mV for an
n=15 composite, while it is 11.3mV for an n=60 composite: clearly for detection
of a resistive voltage, the n=60 composite is preferable to the n=15 composite.

Table 6.5b: Summary of Solution to d), and e)

LAl | Ia[A] I, [A] Rl [V] P.a[W]  |gjea [W/em?]|  Rai [Q]
n=230
90 0.00141 89.9986 |0.424x107%| 38.1x107¢ | 3.81x107° | 0.127x 10~
100 0.0330 99.967 | 9.90x107° | 990x107°% | 99.0x107° | 2.97x107°
120 3.37 116.63 | 1.01x1073 | 121x1073 | 12.1x1073 | 260x 10~
150 25.27 124.73 | 7.58x1073 1.14 114x10~3 | 1.82x 1073
300 167.16 132.8 | 50.1x107* 15.0 1.50 11.32x 1073
500 363.67 136.33 | 109x10~2 54.6 5.46 24.0x1073
n=>060
90 0.00006 | 89.99994 [0.018x107°| 1.62x107°% [0.162x107°%]0.012x 107
100 0.0327 99.9673 | 9.81x107% | 981x107° | 98.1x107° | 5.89x107°
120 10.02 109.98 | 3.01x1073 | 361x1073 | 36.1x1073 | 1.64x 1073
150 37.57 11243 | 11.3x1073 1.69 169%1072 | 6.02x1072
300 184.55 11545 | 55.4x1073 16.6 1.66 28.8x 1073
500 383.14 116.86 [114.9x1073 57.5 5.75 59.0x 1073







