Solution to Problem 1

a) Two voltage equations are:

$$
\begin{align*}
& L \frac{d I(t)}{d t}+M \frac{d I_{s}(t)}{d t}+R I=0 \tag{S2.1a}\\
& M \frac{d I(t)}{d t}+L_{s} \frac{d I_{s}(t)}{d t}=0 \tag{S2.1b}
\end{align*}
$$

b) Solving for $I_{s}(t)$ from Eq. $S 2.1 b$, we obtain:

$$
\begin{equation*}
I_{s}(t)=-\frac{M}{L_{s}} I(t)+C \tag{S2.2}
\end{equation*}
$$

Because $I_{s}(t=0)=0, C=0$, and because $I(t=0)=I(t=\infty)=0, I_{s}(t) \neq 0$ only when $I(t) \neq 0$. That is, a "virgin" closed superconducting circuit cannot remain energized alone, with an external current source shut off.

Solution to Problem 2

For $r \gg \delta_{d}, r_{j}$ of each dipole may be given in terms of r and θ :

$$
\begin{align*}
& r_{1} \simeq r-\delta_{d} \sin \theta \tag{S4.1a}\\
& r_{2} \simeq r+\delta_{d} \cos \theta \tag{S4.1b}\\
& r_{3} \simeq r+\delta_{d} \sin \theta \tag{S4.1c}\\
& r_{4} \simeq r-\delta_{d} \cos \theta \tag{S4.1d}
\end{align*}
$$

With Eq. $S 4.1$ into Eq. 2.51 for each dipole and ϑ_{j} expressed in terms of θ :

$$
\begin{align*}
\vec{B}_{1} & \simeq \frac{r_{d}^{2} \ell_{d} B_{\circ}}{2\left(r-\delta_{d} \sin \theta\right)^{3}}\left(-\cos \theta \vec{\imath}_{r}-\frac{1}{2} \sin \theta \vec{\imath}_{\theta}\right) \tag{S4.2a}\\
\vec{B}_{2} & \simeq \frac{r_{d}^{2} \ell_{d} B_{\circ}}{2\left(r+\delta_{d} \cos \theta\right)^{3}}\left(\sin \theta \vec{\imath}_{r}-\frac{1}{2} \cos \theta \vec{\imath}_{\theta}\right) \tag{S4.2b}\\
\vec{B}_{3} & \simeq \frac{r_{d}^{2} \ell_{d} B_{\circ}}{2\left(r+\delta_{d} \sin \theta\right)^{3}}\left(\cos \theta \vec{\imath}_{r}+\frac{1}{2} \sin \theta \vec{\imath}_{\theta}\right) \tag{S4.2c}\\
\vec{B}_{4} & \simeq \frac{r_{d}^{2} \ell_{d} B_{\circ}}{2\left(r-\delta_{d} \cos \theta\right)^{3}}\left(-\sin \theta \vec{\imath}_{r}+\frac{1}{2} \cos \theta \vec{\imath}_{\theta}\right) \tag{S4.2d}
\end{align*}
$$

For $r \gg \delta_{d}$ the denominator of each term may be expanded; to $1^{\text {st }}$ order in δ_{d} / r Eq. $S 4.2$ becomes:

$$
\begin{align*}
& \vec{B}_{1} \simeq \frac{r_{d}^{2} \ell_{d} B_{\circ}}{2 r^{3}}\left[1+3\left(\frac{\delta_{d}}{r}\right) \sin \theta\right]\left(-\cos \theta \vec{\imath}_{r}-\frac{1}{2} \sin \theta \vec{\imath}_{\theta}\right) \tag{S4.3a}\\
& \vec{B}_{2} \simeq \frac{r_{d}^{2} \ell_{d} B_{\circ}}{2 r^{3}}\left[1-3\left(\frac{\delta_{d}}{r}\right) \cos \theta\right]\left(\sin \theta \vec{\imath}_{r}-\frac{1}{2} \cos \theta \vec{\imath}_{\theta}\right) \tag{S4.3b}\\
& \vec{B}_{3} \simeq \frac{r_{d}^{2} \ell_{d} B_{\circ}}{2 r^{3}}\left[1-3\left(\frac{\delta_{d}}{r}\right) \sin \theta\right]\left(\cos \theta \vec{\imath}_{r}+\frac{1}{2} \sin \theta \vec{\imath}_{\theta}\right) \tag{S4.3c}\\
& \vec{B}_{4} \simeq \frac{r_{d}^{2} \ell_{d} B_{\circ}}{2 r^{3}}\left[1+3\left(\frac{\delta_{d}}{r}\right) \cos \theta\right]\left(-\sin \theta \vec{\imath}_{r}+\frac{1}{2} \cos \theta \vec{\imath}_{\theta}\right) \tag{S4.3d}
\end{align*}
$$

Combining each field given by Eq. S4.3, we obtain:

$$
\begin{equation*}
\vec{B}=\vec{B}_{1}+\vec{B}_{2}+\vec{B}_{3}+\vec{B}_{4} \simeq \frac{3 r_{d}^{2} \ell_{d} B_{0} \delta_{d}}{r^{4}}\left(-\sin 2 \theta \vec{\imath}_{r}+\frac{1}{2} \cos 2 \theta \vec{\imath}_{\theta}\right) \tag{2.52}
\end{equation*}
$$

Note that $|\vec{B}|$ decreases $\propto 1 / r^{4}$ rather than $\propto 1 / r^{3}$, as would a single dipole.

Solution to Problem 3

a) The centripetal force, $\vec{F}_{c p}$, on a circulating proton (mass M_{p}) is balanced by the Lorentz force, \vec{F}_{L}. The direction of B_{z} is chosen to make F_{L} point radially inward because $F_{c p}$ always points radially outward. The two forces are given by:

$$
\begin{align*}
\vec{F}_{c p} & =\frac{M_{p} v^{2}}{R_{a}} \vec{\imath}_{r} \simeq \frac{M_{p} c^{2}}{R_{a}} \vec{\imath}_{r}=\frac{E_{p}}{R_{a}} \vec{\imath}_{r} \tag{S12.1a}\\
\vec{F}_{L} & =-q c B_{z} \vec{\imath}_{r} \tag{S12.1b}
\end{align*}
$$

Solving for R_{a} from $\vec{F}_{c p}+\vec{F}_{L}=0$, we obtain:

$$
\begin{equation*}
R_{a}=\frac{E_{p}}{q c B_{z}} \tag{S12.2}
\end{equation*}
$$

From Eq. S12.2, we have:

$$
\begin{aligned}
R_{a} & =\frac{\left(1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)\left(7 \times 10^{12} \mathrm{eV}\right)}{\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)(8.3 \mathrm{~T})} \\
& \simeq 2.81 \times 10^{3} \mathrm{~m} \simeq 2.8 \mathrm{~km}
\end{aligned}
$$

This is less than the actual radius of LHC, which is slightly over 4 km . Note that in the above computation it is assumed that the entire ring is occupied by dipoles; in fact the occupancy rate for the dipoles is $\sim 60 \%$ - quadrupoles, detector magnets occupy most of the rest. The average dipole field along the LHC ring is thus $\sim 5 \mathrm{~T}$, leading to a computed radius of $\sim 4 \mathrm{~km}$. Of course, a dipole field of $B_{z}=15 \mathrm{~T}$, for example, will nearly halve the ring diameter; superconducting dipole magnets with a field in the range $10-16 \mathrm{~T}$ are not out of the question [3.54-3.56].
b) The proton mass M_{p}, traveling at speed v, is related to its rest mass, M_{p} $\left(1.67 \times 10^{-27} \mathrm{~kg}\right)$, by:

$$
\begin{equation*}
M_{p}=\frac{M_{p_{o}}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\frac{E_{p}}{c^{2}} \tag{S12.3}
\end{equation*}
$$

Solving for v / c from Eq. S12.3, we have:

$$
\begin{equation*}
\frac{v}{c}=\sqrt{1-\frac{M_{p_{\circ}}^{2} c^{4}}{E_{p}^{2}}} \tag{S12.4}
\end{equation*}
$$

Because v / c is very close to 1 , Eq. $S 12.4$ may be approximated by:

$$
\begin{aligned}
\frac{v}{c} & \simeq 1-\frac{M_{p_{\circ}}^{2} c^{4}}{2 E_{p}^{2}}=1-\frac{\left(1.67 \times 10^{-27} \mathrm{~kg}\right)^{2}\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{4}}{2\left(1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)^{2}\left(7 \times 10^{12} \mathrm{eV}\right)^{2}} \\
& \simeq 1-9 \times 10^{-9}
\end{aligned}
$$

That is, the proton velocity is within nine parts per billion of the speed of light.

Solution to Problem 4

a) Because of symmetry about $x=0$, we shall consider only one half of the slab, between $x=0$ and $x=a$. As illustrated in Fig. 5.18, the solid line corresponds to $H_{s 1}(x)$, which gives the initial field distribution within the slab, with $J=J_{c}$. The dotted line corresponds to $H_{s 2}(x)$ for the slab carrying $J_{c}-\left|\Delta J_{c}\right|$. Note that the field at the surface is H_{e} in both cases. We thus have:

$$
\begin{align*}
& H_{s 1}(x)=H_{e}+J_{c}(x-a) \tag{S2.1a}\\
& H_{s 2}(x)=H_{e}+\left(J_{c}-\left|\Delta J_{c}\right|\right)(x-a) \tag{S2.1b}
\end{align*}
$$

Because there is a change in magnetic field within the slab, an electric field \vec{E} is gener-

Fig. 5.18 Field profiles. ated, which from Faraday's law of induction is given by:

$$
\begin{equation*}
\oint_{\mathcal{C}} \vec{E} \cdot d \vec{s}=-\mu_{\circ} \int_{\mathcal{S}} \frac{\Delta H_{s}(x) \vec{\imath}_{y} \cdot d \overrightarrow{\mathcal{A}}}{\Delta t} \tag{S2.2}
\end{equation*}
$$

From symmetry we have $\vec{E}(x=0)=0$ and \vec{E} points in the z-direction. $\Delta H_{s}(x)$ is given by:

$$
\begin{align*}
\Delta H_{s}(x) & =H_{s 2}(x)-H_{s 1}(x) \\
& =\left|\Delta J_{c}\right|(a-x) \tag{S2.3}
\end{align*}
$$

Combining Eqs. $S 2.2$ and $S 2.3$, we obtain:

$$
\begin{align*}
E_{z}(x) & =\mu_{\circ} \frac{\left|\Delta J_{c}\right|}{\Delta t} \int_{0}^{x}(a-x) d x \\
& =\mu_{\circ} \frac{\left|\Delta J_{c}\right|}{\Delta t}\left(a x-\frac{x^{2}}{2}\right) \tag{S2.4}
\end{align*}
$$

Dissipation power density, $p(x)$, is given by $E_{z}(x) J_{c}$; the total energy density per unit length dissipated in the slab or per unit slab surface area in the $y-z$ plane, \mathcal{E}_{ϕ} $\left[\mathrm{J} / \mathrm{m}^{2}\right]$, is given by:

$$
\begin{align*}
\mathcal{E}_{\phi} & =\int_{0}^{a} p(x) \Delta t d x \\
& =\mu_{\circ} J_{c}\left|\Delta J_{c}\right| \int_{0}^{a}\left(a x-\frac{x^{2}}{2}\right) d x=\frac{\mu_{\circ} J_{c}\left|\Delta J_{c}\right| a^{3}}{3} \tag{S2.5}
\end{align*}
$$

The average dissipation energy density, e_{ϕ}, is given by \mathcal{E}_{ϕ} / a :

$$
\begin{equation*}
e_{\phi}=\frac{\mu_{\circ} J_{c}\left|\Delta J_{c}\right| a^{2}}{3} \tag{5.37}
\end{equation*}
$$

b) The Poynting energy flux $\left[\mathrm{J} / \mathrm{m}^{2}\right]$ in the $y-z$ plane into the slab (in the $-x$ direction) at $x=a$ is equal to the change in magnetic energy storage flux ΔE_{m} $\left[\mathrm{J} / \mathrm{m}^{2}\right]$ and dissipation energy flux \mathcal{E}_{ϕ} in the slab. Thus:

$$
\begin{equation*}
\int S_{x}(a) d t=\Delta E_{m}+\mathcal{E}_{\phi} \tag{S2.6}
\end{equation*}
$$

We can verify the direction of \vec{S} by computing $\vec{S}=\vec{E} \times \vec{H}$ at $x=a$. At $x=a$, $\vec{H}=H_{e} \vec{r}_{y}$; from $E_{z}(x)$ derived in Eq. S2.4:

$$
\begin{equation*}
E_{z}(a)=\mu_{\circ} \frac{\left|\Delta J_{c}\right| a^{2}}{2 \Delta t} \tag{S2.7}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
\vec{S}(a)=\mu_{\circ} \frac{\left|\Delta J_{c}\right| a^{2}}{2 \Delta t} \vec{\imath}_{z} \times H_{e} \vec{\imath}_{y}=-\mu_{\circ} \frac{H_{e}\left|\Delta J_{c}\right| a^{2}}{2 \Delta t} \vec{\imath}_{x} \tag{S2.8}
\end{equation*}
$$

As expected, $\vec{S}(a)$ points in the $-x$-direction; energy indeed flows into the slab. Thus:

$$
\begin{equation*}
\int S_{x}(a) d t=\mu_{\circ} \frac{H_{e}\left|\Delta J_{c}\right| a^{2}}{2} \tag{S2.9}
\end{equation*}
$$

The difference in magnetic energy flux ΔE_{m} in the slab is given by:

$$
\begin{align*}
\Delta E_{m} & =\frac{\mu_{\circ}}{2} \int_{0}^{a}\left[H_{s 2}^{2}(x)-H_{s 1}^{2}(x)\right] d x \tag{S2.10}\\
& =\frac{\mu_{\circ}}{2} \int_{0}^{a}\left\{\left[H_{e}+\left(J_{c}-\left|\Delta J_{c}\right|\right)(x-a)\right]^{2}-\left[H_{e}+J_{c}(x-a)\right]^{2}\right\} d x \\
& =\frac{\mu_{\circ}}{2} \int_{0}^{a}\left[-2 H_{e}\left|\Delta J_{c}\right|(x-a)-2 J_{c}\left|\Delta J_{c}\right|(x-a)^{2}+\left|\Delta J_{c}\right|^{2}(x-a)^{2}\right] d x
\end{align*}
$$

Neglecting the $\left|\Delta J_{c}\right|^{2}$ term in the above integral, we obtain:

$$
\begin{equation*}
\Delta E_{m}=\mu_{\circ}\left(\frac{H_{e}\left|\Delta J_{c}\right| a^{2}}{2}-\frac{J_{c}\left|\Delta J_{c}\right| a^{3}}{3}\right) \tag{S2.11}
\end{equation*}
$$

From Eq. S2.6, we have:

$$
\begin{equation*}
\mathcal{E}_{\phi}=\int S_{x}(a) d t-\Delta E_{m} \tag{S2.12}
\end{equation*}
$$

Combining Eqs. $S 2.9, S 2.11$, and $S 2.12$, we obtain:

$$
\begin{align*}
\mathcal{E}_{\phi} & =\mu_{\circ} \frac{H_{e}\left|\Delta J_{c}\right| a^{2}}{2}-\mu_{\circ}\left(\frac{H_{e}\left|\Delta J_{c}\right| a^{2}}{2}-\frac{J_{c}\left|\Delta J_{c}\right| a^{3}}{3}\right) \\
& =\mu_{\circ} \frac{J_{c}\left|\Delta J_{c}\right| a^{3}}{3} \tag{S2.13}
\end{align*}
$$

Equation $S 2.13$ leads directly to Eq. 5.37 :

$$
\begin{equation*}
e_{\phi}=\frac{\mathcal{E}_{\phi}}{a}=\frac{\mu_{o} J_{c}\left|\Delta J_{c}\right| a^{2}}{3} \tag{5.37}
\end{equation*}
$$

c) As given by Eq. $5.38, J_{c}(T)$ is a decreasing function of temperature. We thus have:

$$
\begin{equation*}
\Delta J_{c}=-J_{c_{\circ}}\left(\frac{\Delta T}{T_{c}-T_{o p}}\right) \tag{5.39}
\end{equation*}
$$

From Eq. 5.39, we have:

$$
\begin{equation*}
\left|\Delta J_{c}\right|=\frac{J_{c_{0}} \Delta T}{T_{c}-T_{o p}} \tag{S2.14}
\end{equation*}
$$

Replacing J_{c} with $J_{c_{o}}$ in Eq. 5.37 and combining it with Eq. $S 2.14$, we obtain:

$$
\begin{equation*}
e_{\phi}=\frac{\mu_{\circ} J_{c_{0}}^{2} \Delta T a^{2}}{3\left(T_{c}-T_{o p}\right)} \tag{S2.15}
\end{equation*}
$$

Note that e_{ϕ} is proportional not only to ΔT but also, more importantly, to a^{2}. Under adiabatic conditions, the dissipation energy density e_{ϕ} increases the superconductor's temperature by ΔT_{s}, given by:

$$
\begin{equation*}
\Delta T_{s}=\frac{e_{\phi}}{\tilde{C}_{s}}>0 \tag{S2.16}
\end{equation*}
$$

\tilde{C}_{s} is the superconductor's average heat capacity $\left[\mathrm{J} / \mathrm{m}^{3} \mathrm{~K}\right]$ in the temperature range from $T_{o p}$ to T_{c}. Combining Eqs. $S 2.15$ and $S 2.16$, and requiring $\Delta T_{s}<\Delta T$ for thermal stability, we have:

$$
\begin{equation*}
\frac{\Delta T_{s}}{\Delta T}<\frac{\mu_{\circ} J_{c_{0}}^{2} a^{2}}{3 \tilde{C}_{s}\left(T_{c}-T_{o p}\right)} \tag{S2.17}
\end{equation*}
$$

For a given superconducting material and operating temperature, a is the only parameter that can be varied by the magnet designer to satisfy Eq. $S 2.17$. That is, thermal stability can be satisfied only if the slab half-width a is less than the critical size a_{c}, given by:

$$
\begin{equation*}
a_{c}=\sqrt{\frac{3 \tilde{C}_{s}\left(T_{c}-T_{o p}\right)}{\mu_{o} J_{c_{o}}^{2}}} \tag{5.40}
\end{equation*}
$$

Equation 5.40 is applied to compute approximate values of a_{c} for NbTi (LTS) operating at 4.2 K and YBCO (HTS) operating at 77.3 K . Table 5.3 lists approximate values of parameters appearing in Eq. 5.40 for both superconductors.
We may conclude that for a circular filament of $\mathrm{NbTi}, a_{c}=140 \mu \mathrm{~m}$ means a critical diameter of $\sim 300 \mu \mathrm{~m}$ (Eq. 5.29) and a coated YBCO tape of width 8 mm .

Table 5.3: Application of Eq. 5.40 to NbTi and YBCO

Superconductor	$T_{o p}[\mathrm{~K}]$	$T_{c}[\mathrm{~K}]$	$J_{c_{o}}\left[\mathrm{~A} / \mathrm{m}^{2}\right]$	$\tilde{C}_{s}\left[\mathrm{~J} / \mathrm{m}^{3} \mathrm{~K}\right]$	$a_{c}[\mathrm{~mm}]$
NbTi	4.2	9.8	2×10^{9}	6×10^{3}	0.14
YBCO	77.3	93	2×10^{9}	2×10^{6}	4

a) Note that Traces A and C are independent of field sweep rate and that the corresponding magnetization - an indication of filament diameter-is much greater for Trace A than that for Trace C. We therefore conclude that Trace A is for Conductor 3 (monofilament) and that Trace C is for Conductor $1\left(\ell_{p 1}\right)$. That leaves Trace B for Conductor $2\left(\ell_{p 2}\right)$. (Remember that each conductor has the same volume of NbTi superconductor, and thus its measured magnetization should be directly proportional to filament diameter.)
b) The ratio of magnetization width, $\left(M\left(H_{e} \uparrow\right)-M\left(H_{e} \downarrow\right)\right.$) of Conductor 3 (monofilament, Trace A) to that of Conductor 1 (Trace C), is roughly 10 for $\mu_{\circ} H_{e}$ below $\sim 1 \mathrm{~T}$ (10 kilo-oersted). Therefore, we conclude that the filament diameter ratio is roughly 10 .
c) Because a field sweep-rate of 900 oersted $/ \sec \left(\mu_{\circ} \dot{H}_{0 z}=0.09 \mathrm{~T} / \mathrm{s}\right)$ makes the magnetization of Conductor 2 (Trace B_{3}) nearly equal to that of Conductor 3 (Trace A), we may conclude that this sweep rate makes Conductor 2's filament twist pitch length $\ell_{p 2}$ critical. Thus from Eq. 5.44:

$$
\begin{equation*}
\ell_{p 2}=2 \sqrt{\frac{2 \rho_{c u} J_{c} d_{f}}{\mu_{o} \dot{H}_{0 z}}} \tag{S5.1}
\end{equation*}
$$

With $\rho_{c u}=2 \times 10^{-10} \Omega \mathrm{~m} ; J_{c} d_{f}=4 \times 10^{4} \mathrm{~A} / \mathrm{m} ;$ and $\mu_{\circ} \dot{H}_{0 z}=0.09 \mathrm{~T} / \mathrm{s}$, we obtain:

$$
\begin{aligned}
\ell_{p 2} & =2 \sqrt{\frac{(2)\left(2 \times 10^{-10} \Omega \mathrm{~m}\right)\left(4 \times 10^{4} \mathrm{~A} / \mathrm{m}\right)}{0.09 \mathrm{~T} / \mathrm{s}}} \\
& =2.7 \times 10^{-2} \mathrm{~m}=27 \mathrm{~mm}
\end{aligned}
$$

This value is close enough to the actual twist pitch of 10 mm . Because the magnetization of Conductor 1 (Trace C) at a sweep rate of 320 oersted/sec is considerably smaller than that of Conductor 2 for the same field sweep rate, we conclude that $\ell_{p 1}$ is significantly shorter than $\ell_{p 2}$.

Solution to Problem 6

a) From the definition of R_{s} and using Eq. $6.25 a$ for V_{s}, we have:

$$
\begin{equation*}
R_{s}=\frac{V_{s}}{I_{s}}=\frac{V_{c}}{I_{s}}\left(\frac{I_{s}}{I_{c}}\right)^{n}=\frac{V_{c}}{I_{c}}\left(\frac{I_{s}}{I_{c}}\right)^{(n-1)} \tag{S3.1}
\end{equation*}
$$

With $R_{c}=V_{c} / I_{c}$, Eq. $S 3.1$ becomes:

$$
\begin{equation*}
R_{s}=R_{c}\left(\frac{I_{s}}{I_{c}}\right)^{(n-1)} \tag{6.26a}
\end{equation*}
$$

$R_{\text {dif }}$ represents the superconductor's differential resistance at I_{s}, hence:

$$
\begin{align*}
& R_{d i f}=\frac{\partial V_{s}}{\partial I_{s}}=\frac{n V_{c}}{I_{c}}\left(\frac{I_{s}}{I_{c}}\right)^{(n-1)} \tag{S3.2}\\
& R_{d i f}=n R_{c}\left(\frac{I_{s}}{I_{c}}\right)^{(n-1)} \tag{6.26a}
\end{align*}
$$

The partial differentiation is performed in Eq. $S 3.2$ because in realistic situations the temperature dependance of I_{c}, i.e., $I_{c}(T)$, must be included in the analysis in the range $I_{s}>I_{c}$, where the composite is expected to be heated, here above 77.3 K .
b) The circuit must satisfy the following current and voltage equations:

$$
\begin{align*}
I_{t} & =I_{m}+I_{s} \tag{S3.3a}\\
V_{m} & =R_{m} I_{m}=V_{s}=V_{c}\left(\frac{I_{s}}{I_{c}}\right)^{n} \tag{S3.3b}
\end{align*}
$$

As an illustration, let us compute I_{m} for $I_{t}=90 \mathrm{~A}$. From Eq. $S 3.3 a$, we have: $I_{s}=90 \mathrm{~A}-I_{m}$. Inserting this into Eq. $S 3.3 b$, we obtain:

$$
\begin{equation*}
3 \times 10^{-4} \Omega \times I_{m}[\mathrm{~A}]=10^{-5} \mathrm{~V}\left(\frac{90 \mathrm{~A}-I_{m}[\mathrm{~A}]}{100 A}\right)^{15} \tag{S3.3c}
\end{equation*}
$$

From Eq. $S 3.3 c: I_{m}=0.00686 \mathrm{~A}$ and hence $I_{s}=89.99314 \mathrm{~A}$.
The total power dissipation in the composite superconductor, $P_{c d}$, is given by:

$$
\begin{equation*}
P_{c d}=R_{m} I_{m} I_{t}=V_{s} I_{t} \tag{S3.4}
\end{equation*}
$$

The Joule dissipation flux, $g_{j c d}$ is given simply by $P_{c d}$ divided by the composite's total cooling surface, here $10 \mathrm{~cm}^{2}$.

Table 6.5 a gives a summary of solution to b).
Table 6.5a: Summary of Solution to b) $(n=15)$

$I_{t}[\mathrm{~A}]$	$I_{m}[\mathrm{~A}]$	$I_{s}[\mathrm{~A}]$	$R_{m} I_{m}[\mathrm{~V}]$	$P_{c d}[\mathrm{~W}]$	$g_{j c d}\left[\mathrm{~W} / \mathrm{cm}^{2}\right]$	$R_{d i f}[\Omega]$
90	0.00686	89.99314	2.06×10^{-6}	185×10^{-6}	18.5×10^{-6}	0.343×10^{-6}
100	0.0332	99.967	9.95×10^{-6}	995×10^{-6}	99.5×10^{-6}	1.49×10^{-6}
120	0.483	119.517	145×10^{-6}	17.4×10^{-3}	1.74×10^{-3}	18.2×10^{-6}
150	7.07	142.93	2.12×10^{-3}	318×10^{-3}	31.8×10^{-3}	223×10^{-6}
300	126.75	173.25	38.0×10^{-3}	11.4	1.14	3.29×10^{-3}
500	315.88	184.12	94.8×10^{-3}	47.4	4.74	7.72×10^{-3}

c) Even when the composite is well-cooled by boiling cryogen, its temperature must rise to transfer Joule dissipation to the cryogen. With liquid nitrogen boiling at 77.3 K , this rise, which increases with heat flux, can be as high as $\sim 10 \mathrm{~K}$ in the nucleate boiling range. The most obvious temperature-dependent parameter in Eq. $6.25 a$ is I_{c}, which decreases with increasing temperature; the temperaturedependence of n is not well-documented, LTS or HTS - in an analysis of this nature, we may assume n to be constant. In the equivalent circuit, R_{m}, if it is a matrix of pure metal, remains constant at low temperatures and increases nearly linearly with temperature beyond $\sim 30 \mathrm{~K} . I_{c}$ on the other hand may be assumed to decrease linearly with T. The $\left(I_{s} / I_{c}\right)^{n}$ term thus increases sharply with temperature as does, consequently, Joule dissipation. Next, in Problem 6.4, we will perform a circuit analysis in which I_{c} and R_{m} are T-dependent.
d) Results for $n=30$ are summarized in Table 6.5b.
e) Table 6.5 b also gives a summary of results with $n=60$.

Note that for $I_{t}>I_{c}=100$ A the smaller the n, the smaller are $I_{m}, R_{m} I_{m}=V_{s}\left(I_{s}\right)$, $P_{c d}, g_{j c d}$, and $R_{d i f}$; for $I_{t}<100 \mathrm{~A}$, the opposite is true. This could pose practical problems in a real situation. For instance, at $I_{t}=150 \mathrm{~A}, R_{m} I_{m}=2.12 \mathrm{mV}$ for an $n=15$ composite, while it is 11.3 mV for an $n=60$ composite: clearly for detection of a resistive voltage, the $n=60$ composite is preferable to the $n=15$ composite.

Table 6.5b: Summary of Solution to d), and e)

$I_{t}[\mathrm{~A}]$	$I_{m}[\mathrm{~A}]$	$I_{s}[\mathrm{~A}]$	$R_{m} I_{m}[\mathrm{~V}]$	$P_{c d}[\mathrm{~W}]$	$g_{j c d}\left[\mathrm{~W} / \mathrm{cm}^{2}\right]$	$R_{d i f}[\Omega]$
$n=30$						
90	0.00141	89.9986	0.424×10^{-6}	38.1×10^{-6}	3.81×10^{-6}	0.127×10^{-6}
100	0.0330	99.967	9.90×10^{-6}	990×10^{-6}	99.0×10^{-6}	2.97×10^{-6}
120	3.37	116.63	1.01×10^{-3}	121×10^{-3}	12.1×10^{-3}	260×10^{-6}
150	25.27	124.73	7.58×10^{-3}	1.14	114×10^{-3}	1.82×10^{-3}
300	167.16	132.8	50.1×10^{-3}	15.0	1.50	11.32×10^{-3}
500	363.67	136.33	109×10^{-3}	54.6	5.46	24.0×10^{-3}
$n=60$						
90	0.00006	89.99994	0.018×10^{-6}	1.62×10^{-6}	0.162×10^{-6}	0.012×10^{-6}
100	0.0327	99.9673	9.81×10^{-6}	981×10^{-6}	98.1×10^{-6}	5.89×10^{-6}
120	10.02	109.98	3.01×10^{-3}	361×10^{-3}	36.1×10^{-3}	1.64×10^{-3}
150	37.57	112.43	11.3×10^{-3}	1.69	169×10^{-3}	6.02×10^{-3}
300	184.55	115.45	55.4×10^{-3}	16.6	1.66	28.8×10^{-3}
500	383.14	116.86	114.9×10^{-3}	57.5	5.75	59.0×10^{-3}

