MDI Status Report

Hongbo Zhu 13 July 2018

MDI CDR Content

1	CEP	C intera	action region and detector integration	1
	1.1	Interaction region		
	1.2	.2 Final focusing magnets		
	1.3	Detector backgrounds		3
		1.3.1	Synchrotron radiation	3
		1.3.2	Beam-beam interactions	4
		1.3.3	Off-energy beam particles	4
		1.3.4	Predicted radiation background levels	6
	1.4	Lumin	nosity instrumentation	8
		1.4.1	Technological and design options	ç
		1.4.2	Systematic effects	14
		1.4.3	Summary on LumiCal	15
	1.5	Detect	tor integration	15

Interaction Region

 Small update to the interaction region layout → Missing Yoke plugin, inner radii of HCal and Yoke/Muon not exactly the same as implemented in Mokka

Final Focusing

 To follow up necessary updates (e.g. improved layout of the compensating magnet) and take some texts from the Acc CDR (reviewed)

Radiation Backgrounds

l Synchrotron radiation	3
•	5
2 Beam-beam interactions	4
3 Off-energy beam particles	5
3	Beam-beam interactions Off-energy beam particles

Synchrotron Radiation

• Studies for CDR considered completed, updating the mask design description

Beamstrahlung/Pair Production

• Missing feature of external field in simulation

- GuineaPig tracks charged particles to n*σ_{x/y}, approximated 2D magnetic field in the transverse plane → even more problematic for larger beam size, e.g. W/Z
- Request sent to the authors and promised to implement the feature when having time in June, but did not happen

Temp Fix

• W. Xu dug deep into the code and read relevant papers in the hope to extend the field to 3D, exploring the x->y->z symmetry

$$\begin{pmatrix} v'_{x} \\ v'_{y} \\ v'_{z} \end{pmatrix} = \begin{pmatrix} 1 - 0.5\theta^{2} + 0.5\theta^{2}b_{x}^{2} & b_{z}\theta + 0.5\theta^{2}b_{x}b_{y} & -\theta b_{y} + 0.5\theta b_{x}b_{z} \\ -b_{z}\theta + 0.5\theta^{2}b_{x}b_{y} & 1 - 0.5\theta^{2} + 0.5\theta^{2}b_{y}^{2} & b_{x}\theta + 0.5\theta b_{z}b_{y} \\ \theta b_{y} + 0.5\theta b_{x}b_{z} & -b_{x}\theta + 0.5\theta b_{y}b_{z} & 1 - 0.5\theta^{2} + 0.5\theta^{2}b_{z}^{2} \end{pmatrix} \begin{pmatrix} v_{x} \\ v_{y} \\ v_{z} \end{pmatrix}$$

Temp Fix

• Not fully validated (contacting the author to confirm if the implementation is right or not), but seems to be in the right direction ...

• Stronger field confines better soft charged particles... One more important fix: stop tracking particles before hitting the beampipe

Next

- Launch more Higgs jobs to evaluate the impact of the temp fix (may have to stay with it for the CDR results, to-our-best-knowledge)
- GuineaPig simulation CPU hungry (cannot be optimized) → heavy load to the batch system but for days ...
 - Generating samples: Higgs -> Z (2T) -> Z(3T) -> W
- Updating the texts as much as possible (this weekend) but will have to wait for the updated results

Beam Loss Particles

- Results for Higgs available, to be put into CDR together with text updates
- W/Z samples are being produced by acc colleagues

Luminosity measurement

- Z lineshape, $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ is dominant, $\sigma = 41 \ nb$
- Luminosity is best provided by detecting Bhabha, $e^+e^- \rightarrow e^+e^-$, elastics scattering
 - a pure QED process, theoretical MC to <0.1% precision
 - triggering on a pair of scattered e⁺e⁻

 $E(e^{\pm}) \sim E_{beam}$, Back-to-Back

LumiCal precision

Luminosity is by counting Bhabha events In a fiducial θ region $1 N_{acc} = 16\pi \alpha^2$ (

 $\mathcal{L} = \frac{1}{\varepsilon} \frac{N_{\text{acc}}}{\sigma^{\text{vis}}} \quad \sigma = \frac{16\pi\alpha^2}{s} \left(\frac{1}{\theta_{\min}^2} - \frac{1}{\theta_{\max}^2} \right)$

Dominant systematic error

 $\delta L/L \sim 2 \delta \vartheta/\vartheta_{min}$

For a precision of $\delta L/L < 10^{-3}$

LumiCal at $z = \pm 1 m$, $\theta_{min} = 30 mRad$

 $\rightarrow \delta \vartheta = 15 \,\mu Rad$ or $dr = 15 \,\mu m$

Error due to offset on Z

 \rightarrow 0.1 mm on z or dr = $\delta Rx\vartheta$ = 3 μm

offset on the **mean** of spatial resolution = offset on θ_{min} → dominant LUMINOSITY error

Boosted Bhabha

BHLUMI colliding e+ e- are back to back Boost CEPC crossing angle of 33 mRad Boost Bhlumi e+, e- to CEPC \rightarrow *E is larger by* ~.01% *Ebeam = 50 GeV* \rightarrow *boosted E = 50.0068 GeV*

- Boosted LO Bhabha, (e⁺e⁻, no γ)
- e⁺, e⁻ detected in *fiducial acceptance* of r > 20 mm
- r- ϕ plotted in bands (every 45 deg in ϕ)
- event loss 163 nb → 98 nb
- Ioss is SIGNIFICANT
- → LumiCal wants a small inner r, in OVAL shape if feasible

LumiCal detector options

Luminosity precision = e^{\pm} detection in Γ , at inner radius of fiducial

- → Silicon strip is the choice!
- Alignment CAN NOT reach 1 μm
- → wide strip (~2mm) CAN NOT reach 10 µm resolution
- → A stand-alone LumiCal CAN NOT calibrate its offsets to IP

L3 Silicon layer + BGO

OPAL Si-W sandwich

LumiCal with a simple tracking ring

error on mean is much smaller, CAN reach 1 μ m, $\delta L/L \sim 0.01 \%$

Detector Integration

• No easy solution for the moment but will discuss this in the CDR

MDI Status, H. Zhu