Review Meeting of TPC Detector R&D for MOST Project 2016.6-2018.6

Huirong Qi, Zhi Deng

Institute of High Energy Physics, CASTsinghua University16. June, 2018, Main building, IHEP, Beijing

For MOST Project Motivation

- Hybrid module R&D
- Space charge for IBF
- Manpower

Motivation

Collider concept

Circular e⁺e⁻ Higgs (Z) factory with two detectors, 1M ZH events in 10yrs E_{cm} ≈240 GeV, luminosity ~2×10³⁴ cm⁻²s⁻¹, can also run at the Z-pole

TPC requirements for collider concept

TPC could be as one tracker detector option for CEPC, 1M ZH events in 10yrs $E_{cm} \approx 250$ GeV, luminosity $\sim 2 \times 10^{34}$ cm⁻²s⁻¹, can also run at the Z-pole

The voxel occupancy takes its maximal value between 2×10^{-5} to 2×10^{-7} , which is safety for the Z pole operation. Of course, it is well for Higgs run too. <u>https://doi.org/10.1088/1748-0221/12/07/P07005</u>

TPC detector concept:

- Motivated by the H tagging and Z
- Main tracker detector with TPC
- ~3 Tesla magnetic field
- ~100 μm position resolution in rφ
- **Systematics precision (<20 μm internal)**
- Large number of 3D points(~220)
- Distortion by IBF issues
- □ dE/dx resolution: <5%
- Tracker efficiency: >97% for pT>1GeV

TPC detector concept

Answer three key issue questions in **CEPC**

High rate at Z pole

- Voxel occupancy
 - The number of voxels / signal
 - 9 thousand Z to qq events
 - 60 million hits are generated in sample
 - □ 4000-6000 hits/(Z to qq) in TPC volume
 - Average hit density: 6 hits/mm²
 - **D** Peak value of hit density: 6 times
 - Voxel size: $1mm \times 6mm \times 2mm$
 - 1.33×10¹⁴ number of voxels/s
 @DAQ/40MHz
 - □ Average voxel occupancy: 1.33 × 10⁻⁸
 - Voxel occupancy at TPC inner most layer: $\sim 2 \times 10^{-7}$
 - Voxel occupancy at TPC inner inner most layer : ~2×10⁻⁵ @FCCee benchmark luminosity

The voxel occupancy takes its maximal value between 2×10^{-5} to 2×10^{-7} , which is safety for the Z pole operation.

<u>ArXiv: 1704.04401</u> Mingrui, Manqi, Huirong

Hit map on X-Y plan for Z to qq events

Distortion of as a function of electron initial r position -7 -

Compare with ILC beam structure

□ In the case of ILD-TPC

- Bunch-train structure of the ILC beam (one ~1ms train every 200 ms)
- Bunches time ~554ns
- Duration of train ~0.73ms
- Used Gating device
- Open to close time of Gating: 50µs+0.73ms
- Shorter working time
- In the case of CEPC-TPC
 - Bunch-train structure of the CEPC beam (one bunch every ~90µs) or partial double ring
 - No Gating device with open and close time
 - Continuous device for ions
 - Long working time

Gating device could NOT be used due to the limit time! .8.

Critical challenge: Ion Back Flow and Distortion

In the case of ILD-TPC

- Distortions by the primary ions at ILD are negligible
- Ions from the amplification will be concentrated in discs of about 1 cm thickness near the readout, and then drift back into the drift volume Shorter working time
- 3 discs co-exist and distorted the path of seed electron
- The ions have to be neutralized during the 200 ms period used gating system

In the case of CEPC-TPC

- Distortions by the primary ions at CEPC are negligible too
- More than 10000 discs co-exist and distorted the path of seed electron
- The ions have to be neutralized during the ~4us period continuously

Though gating GEM stop positive ions, should not stop electron too.→Electron transmission trate is important

Open and close time of gating device for ions

ALICE TPC option

Solution Option

ALICE TPC Upgrade

Production of 40 IROCs and 40 OROCs until September 2018

TPC Upgrade requirements:

- Nominal gain = 2000 in Ne-CO₂-N₂ (90-10-5)
- IBF < 1% (ε = 20)
- Energy resolution: $\sigma_E/E < 12\%$ for ⁵⁵Fe
- Stable operation under LHC Run 3 conditions
- Unprecedented challenges in terms of loads and performance

Solution: 4-GEM stack Combination of standard (S) and large pitch (LP) GEM foils Highly optimized HV configuration Result of intensive R&D

Hybrid module R&D

IBF simulation

Yulian, Haiyun, Huirong

- □ Garfield++/ANSYS to simulate the ions back to drift
 - **420LPI/ 590LPI/ 720LPI/1000LPI**
 - **Ea is electric field of amplifier of Micromegas**
 - □ Standard GEM foil (70-50-70)
 - □ Standard Bulk-Micromegas (420LPI)
 - **GEM** optimization: wider hole **GEM/KEK**
 - MM optimization: 590LPI mesh/Saclay

- 13 -

Test of the new module

- **Test with GEM-MM module**
 - New assembled module
 - □ Active area: 100mm × 100mm
 - **A** X-tube ray and 55Fe source
 - **Bulk-Micromegas from Saclay**
 - **Standard GEM from CERN**
 - Additional UV light device
 - **Δ** Avalanche gap of MM:128μm
 - □ Transfer gap: 2mm
 - Drift length:2mm~200mm
 - Mesh: 400LPI

Micromegas(Saclay)

GEM(CERN)

Cathode with mesh

GEM-MM Detector

Electrometer/High Resistance Meter

Keithley 6517B

Electrometer/High Resistance Meter, 100aA - 20mA, 10μV - 200V, 100Ω - 10PΩ

Brand:	Keithley
Model No:	6517B

Product Features:

- Measures resistances up to 10180
- 10aA (10×10-18A) current measurement resolution
- Less than 3fA input bias current
- 6 1/2-digit high accuracy measurement mode
- Less than 20µV burden voltage on the lowest current ranges
- Voltage measurements up to 200V with >200TO input impedance
- Built-in +/-1000V voltage source
- Unique alternating polarity voltage sourcing and measurement method for high resistance measurements
- Built-in test sequences for four different device characterization tests, surface and volume resistivity, surface insulation resistance, and voltage sweeping
- Optional plug-in scanner cards for testing up to 10 devices or material samples with one test setup

Measuremnt of GEM-MM module

- Test with GEM-MM module
 - Keithley Electrometers for Ultra-Low Current Measurements: pA~mA
 - Keithley: 6517B
 - Test of cathode of the module
 - Test of readout anode of the module
 - Labview interface of the low current to make the record file automatically

$$IBF = \frac{I_C - I_P}{I_A}$$

- 40 (m 11	操(%(0) 工具(T) 管口(W) 帮助(H)		
LEE?		time 175.084M	
A9780	STOP	ø	
1948 (19600) 19602 (18 (18) (18) (19	Range 200 pA	20042 2044 24 2044 2044 24	A 2001A 201A 2nA 200pA 20pA 20pA
4 None			
* None F210 1.0 5 1.0	2010,+00439401NIS# Serrent 19104E-11	25p-	mit 0 A

Labview interface of the current with Keithley

GEM-MM module

High voltage diagram of the detector module

Energy spectrum@⁵⁵Fe

Yulian, Haiyun, Huirong

Source: 55 Fe, Gas mix: Ar(97) + iC₄H₁₀(3)

An example of the 55Fe spectra showing the correspondence between the location of an X-ray absorption and each peak.

Discharge and working time

□ Test with Fe-55 X-ray radiation source

- Discharge possibility could be mostly reduced than the standard Bulk-Micromegas
- Discharge possibility of hybrid detector could be used at Gain~10000
- **•** To reduce the discharge probability more obvious than standard Micromegas
- At higher gain, the module could keep the longer working time in stable

IBF study with the module

Primary electrons current

- □ No operation voltage of the GEM-MM detector
- □ Just test current of the primary electrons (~pA)

Ic and Ia

GEM with operation voltage

□ MM with operation voltage

IBF and **G**ain

Preliminary results in 2017

Fig. 4: (color online) Gas gain and IBF versus (a) GEM voltage, micromesh $V_{mesh} = 420$ V and (b) micromesh voltage, $V_{gem} = 340$ V. $E_d = 250$ V/cm, $E_t = 500$ V/cm.

IBF ratio of 0.19% under overall detector gain of 5000 was achieved in our test in 2017.

Gain of the hybrid structure detector

Optimization of Et/Ed

- □ Et/Ed set to 1-1.5 to control the IBF
- □ Ed=200V/cm for T2K at the saturation velocity

- 27 -

Key IBF factor: IBF×Gain

Preliminary results in 2018

Space charge to decrease IBF

http://iopscience.iop.org/article/10.1088/1748-0221/9/04/C04025/pdf

https://www.sciencedirect.com/science/article/pii/S01689 00216308221

High rate and lots of ions make space charge effect to decrease IBF posibility !!!

Check and answer -Gain

Single GEM with very low Gain in our Exp.

Green, T2K, Et=200V/cm, Ed=200V/cm, V_mesh=400V, V_Gem:30~300V Yellow, Ar/iso(95/5), Et=200V/cm, Ed=200V/cm, V_mesh=400V, V_Gem:30~300V

Check and answer- $\rho_{ion} \times d_{Current of Pad is very low in our Exp.}$

Green: T2K, Yellow: Ar/iso(95/5)

T2Kgas Ic: 4pA \sim 59pA, \sim 10³ (fC/cm²) Ar/iso gas Ic: 3.5pA \sim 53pA, \sim 10³ (fC/cm²)

GEM+MM@CEPC R&D

e+e- machine Primary N_{eff} is small: ~30 Pad size:1mm×6mm Photo peak and escape peak are clear! Good electron transmission. Good energy resolution.

GEM+GEM+MM@ALICE R&D

Heavy ions machine Primary N_{eff} is small: >300 Photo peak and escape peak are merged! Electron transmission and the energy resolution are not good.

Manpower and activities

- **TPC** detector **R&D** @IHEP (2016~2020)
 - Huirong Qi,
 - Yulian Zhang (PhD,IHEP), Haiyun Wang(PhD,IHEP), Zhiwen Wen(PhD,IHEP)
 - **Prof. Jin Li**
 - □ Funding from MOST and NSFC(~3.5 Million RMB)
- □ Electronics R&D &Tsinghua (2016~2020)
 - Zhi Deng
 - Yiming Cai(PhD,THU), Zhao Mingrui (Master, THU) and three PhDs in electronics lab
 - **Prof. Yuanning Gao, Prof. Yulan Li**
 - □ Funding from NSFC (~2.0 Million RMB)

Summary

Continuous IBF module

- □ No Gating device options used for Higgs/Z pole run
- Continuous Ion Back Flow due to the continuous beam structure (Developed in IHEP)
- **Preliminary results: Key factor of IBF×Gain=5**
- Low discharge and spark possibility

Beam test plan in next year

- **D** Position resolution test
- $\Box \quad dE/dx$

Thanks.