The CEPC Detector Highlights and R&D Program

João Guimarães da Costa (IHEP, Chinese Academy of Sciences) ICHEP CEPC Satellite meeting – Seoul 6 July 2018

Organization of the Physics and Detector Working Group

Machine Detector Interface

Hongbo Zhu Sha Bai

Vertex

Ouyang Qun Sun Xiangming Wang Meng

Tracker

Qi Huirong Yulan Li

http://cepc.ihep.ac.cn/~cepc/cepc_twiki/index.php/Physics_and_Detector

Conveners

Joao Barreiro Guimaraes Costa (IHEP) Yuanning Gao (Tsinghua Univ.) Shan Jin (Nanjing Univ.)

	Calorimeter	
ECal	HCal	Muons
Hu Tao	Liu Jianbei Yang Haijun	Li Liang Zhu Chenggua

Physics analysis and detector optimization

Ruan Mangi Li Gang Li Qiang Fang Yaquan

Organization of the Physics and Detector Working Group

http://cepc.ihep.ac.cn/~cepc/cepc_twiki/index.php/Physics_and_Detector

Main Parameters of Collider Ring

	Higgs	Ŵ	Z (3T)	Z (2T)
Number of IPs		2		
Beam energy (GeV)	120	80	45	5.5
Crossing angle at IP (mrad)		16.5×2	2	
Number of particles/bunch N _e (10 ¹⁰)	15.0	12.0	8	.0
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25n	s+10%gap)
<mark>Beam size at IP σ_x /σ_y (μm)</mark>	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.0
Bunch length σ _z (mm)	3.26	5.9	8	.5
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1

Detector Conceptual Designs

Baseline detector (3 Tesla) ILD-like (similar to pre-CDR)

Low magnetic field concept (2 Tesla)

Final two detectors likely to be a mix and match of different options

CEPC plans for **2** interaction points

Full silicon tracker concept

CEPC baseline detector: ILD-like

Magnetic Field: 3 Tesla — changed from preCDR

• Impact parameter resolution: less than 5 μ m • Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5}$ (GeV⁻¹)

• Jet energy resolution: $\sigma_E / E \sim 30\% / \sqrt{E}$

- m /-1)
- Flavor tagging
- BR(Higgs → µµ)
- W/Z dijet mass separation

CEPC baseline detector: ILD-like: Design Considerations

Major concerns being addressed

1. MDI region highly constrained L* increased to 2.2 m **Compensating magnets**

2. Low-material Inner Tracker design

3. TPC as tracker in high-luminosity **Z-pole scenario**

4. ECAL/HCAL granularity needs Passive versus active cooling

Magnetic Field: 3 Tesla — changed from preCDR

•Impact parameter resolution: less than 5 µm • Tracking resolution: $\delta(1/Pt) \sim 2 \times 10^{-5}$ (GeV⁻¹)

• Jet energy resolution: $\sigma_F/E \sim 30\%/\sqrt{E}$

- Flavor tagging
- BR(Higgs $\rightarrow \mu\mu$)
- W/Z dijet mass separation

Low magnetic field detector concept

Proposed by INFN, Italy colleagues

Similar to Concept Detector for FCC-ee Collaboration with China Magnet: 2 Tesla, 2.1 m radius

Thin (~ 30 cm), low-mass (~0.8 X₀)

- Vertex: Similar to CEPC default
- * Drift chamber: 4 m long; Radius ~30-200 cm
- Preshower: ~1 X₀
- * Dual-readout calorimeter: 2 m/8 λ_{int}
- * (yoke) muon chambers

Integrated test beam September 2018 Looking for helpers

Interaction region: Machine Detector Interface

One of the most complicated issue in the CEPC detector design

Full partial double ring

Challenging engineering design

Updated baseline parameters:

Head-on collision changed to crossing angle of **33 mrad** Focal length (**L***) increased from 1.5 m to **2.2 m** Solenoid field reduced from 3.5 T to **3 T**

Baseline Pixel Detector Layout 3-layers of double-sided pixel sensors

		R(mm)	z (mm)	$ cos \theta $	$\sigma(\mu m)$	Readout tin
Ladder	Layer 1	16	62.5	0.97	2.8	20
1	Layer 2	18	62.5	0.96	6	1-10
Ladder	Layer 3	37	125.0	0.96	4	20
2	Layer 4	39	125.0	0.95	4	20
Ladder	Layer 5	58	125.0	0.91	4	20
3	Layer 6	60	125.0	0.90	4	20

+ ILD-like layout

+ Innermost layer: $\sigma_{SP} = 2.8 \ \mu m$

+ Polar angle $\theta \sim 15$ degrees

+ Material budget $\leq 0.15\% X_0/layer$

Implemented in GEANT4 simulation framework (MOKKA)

Current R&D activities

Initial sensor R&D targeting:

	Specs
Single point resolution near IP:	< 3-5 μm
Power consumption:	< 100 mW/cm ²
Integration readout time:	< 10-100 µs
Radiation (TID)	1 MRad

Sensors technologies:

	Process	Smallest pixel size	Chips designed	Observations
CMOS pixel sensor (CPS) Tow	verJazz CIS 0.18 µm	22 × 22 µm²	2	Founded by MOST and
SOI pixel sensor	LAPIS 0.2 µm	16 × 16 µm²	2	Funded by NSFC

- Institutions: CCNU, NWTU, Shandong, Huazhong Universities and IHEP (IPHC in Strasbourg, KEK)
- New project: Full size CMOS sensor for use in real size prototype

IHEP

Silicon Tracker Detector – Baseline **SET:** r = ~1.8 m

Not much R&D done so far

Sensor technology

1. Microstrip sensors 2. Large CMOS pixel sensors (CPS)

Power and Cooling

1. DC/DC converters

2. Investigate air cooling

ETD: z = ~2.4 m

Extensive opportunities for international participation

Time Projection Chamber (TPC) TPC detector concept

- Allows for particle identification
- Low material budget: •
 - 0.05 X₀ including outfield cage in r •
 - **0.25** X₀ for readout endcaps in Z
- 3 Tesla magnetic field —> reduces diffusion of drifting electrons
- Position resolution: ~100 μ m in r ϕ •
- dE/dx resolution: 5%
- GEM and Micromegas as readout
- Problem: Ion Back Flow —> track distortion **Operation at L > 2 × 10^{34} cm⁻² s⁻¹**

Prototype built

IEP, Tsinghua and Shandong y MOST and NSFC

Drift Chamber Option – IDEA proposal

Lead by Italian Colleagues

and MEG2 experiments

Follows design of the KLOE

Low-mass cylindrical drift chamber

- Length: 4 m **Radius: 0.3-2m** Gas: 90%He – 10%iC₄H₁₀ Material: 1.6% X₀ (barrel)
- •

Layers: 14 SL × 8 layers = 112 Cell size: 12 - 14 mm

Stereo angle: 50-250 mrad

- Spatial resolution: < 100 µm dE/dx resolution: 29
- Max drift time: <400 nsec Cells: 56,448

MEG2 prototype being tested

Full silicon tracker concept

Replace TPC with additional silicon layers SIDB: SiD optimized 5 barrel single strip layers 5 endcap double strip layers

CEPC-SID:

6 barrel double strip layers 5 endcap double strip layers

Collaboration with Argonne and Berkeley

Drawbacks: higher material density, less redundancy and limited particle identification (dE/dx)

Calorimeter options

Chinese institutions have been focusing on Particle Flow calorimeters

R&D supported by MOST, NSFC and **HEP** seed funding

Hadronic

New

(*) SDHCAL with RPC and Stainless Steel (SJTU + IPNL, France) SDHCAL with ThGEM/GEM and Stainless Steel (IHEP + UCAS + USTC) (*) HCAL with Scintillator+SiPM and Stainless Steel (IHEP + USTC + SJTU)

ECAL with Silicon and Tungsten (LLR, France) ECAL with Scintillator+SiPM and Tungsten (IHEP + USTC)

(*) Dual readout calorimeters (INFN, Italy + Iowa, USA)

ECAL Calorimeter — Particle Flow Calorimeter Scintillator-Tungsten Sandwich ECAL

Superlayer (7 mm) is made of:

- 3 mm thick: Tungsten plate
- 2 mm thick: 5 x 45 mm²
- 2 mm thick: Readout/service layer

Plastic scintillator 5 x 45 mm² (2 mm thick)

R&D on-going:

- SiPM dynamic range
- Scintillator strip non-uniformity
- Coupling of SiPM and scintillator

Mini-prototype tested on testbeam at the IHEP

HCAL Calorimeter — Particle Flow Calorimeter Scintillator and SiPM HCAL (AHCAL)

Dual Readout Calorimeter

Lead by Italian colleagues: based on the DF

Projective 4π layout implemented into CEPC simulation (based on 4th Detector Collaboration design)

Covers full volume up to $|\cos(\theta)| = 0.995$ with 92 different types of towers (wedge)

4000 fibers (start at different dept 4000 fibers (start at different depths to keep constant the sampling fraction)

/**5**m Εl 1.8m $\cos(\text{theta}) > 0.995$

Expected resolution: EM: ~10%/sqrt(E) Hadronic: 30-40%/sqrt(E)

Studying different readout schemes **PMT vs SiPM**

Several prototypes from RD52

nave been built

Superconductor solenoid development Updated design done for 3 Tesla field (down from 3.5 T)

Design for 2 Tesla magnet presents no problems

Double-solenoid design also available

Default is NbTi Rutherford SC cable (4.2K) Solutions with High-Temperature SC cable also being considered (YBCO, 20K)

7240	Main parameters of solenoid coil		
6080	Central magnetic field 3 T		
	Operating current	15779 A	
4400 3600	Stored energy	1.3 GJ	
	Inductance	10.46 H	
1810	Coil radius	3.6-3.9 m	
500	Coil length	7.6 m	
174	Cable length	30.35 km	

Muon detector

Baseline Muon detector

- 8 layers
- Embedded in Yoke
- Detection efficiency: 95%

Technologies considered

Monitored Drift Tubes Resistive Plate Chambers (RPC) Thin Gap Chambers (TGC) Micromegas Gas Electron Multiplier (GEM) Scintillator Strips

Baseline: Bakelite/glass RPC

Good experience in China on gas detectors strong direct work on CEPC — rather open collaboration

New technology proposal (INFN): µRwell

Muon system: open studi

Layout optimization:

- Justification for number of layers
 - Implications for exotic physics searc
 - Use as a tail catcher / muon tracker (TCMT)
 - Jet energy resolution with/without TCMT

Funding Support for Detector R&D

Multiple funding sources

Detector Silicon TPC Calorimeter Magnet **Total**

Ministery of Sciences and Technology (MOST) **National Science Foundation of China**

- Major project funds
- Individual funds

Industry cooperation funds **IHEP Seed Funding** Others

Funding (M RMB)
18.2
7.0
21.3
8.7
55.2

Currently secured funding

Conceptual Design Report (CDR) – Status

Pre-CDR completed in 2015

- No show-stoppers lacksquare
- Technical challenges identified \rightarrow R&D issues •

0

Draft-0 released in November 2017

***** Mini international review

Early fall 2018: Planned public release date

- **Soon after CEPC accelerator CDR is released**
- ***** Accommodate new accelerator design parameters and solenoid magnetic field

Still

***** Opportunities for people to contribute editing, reviewing

(<u>http://cepc.ihep.ac.cn/preCDR/volume.html</u>)

- **Detector and Physics Conceptual Design Report (CDR)**
 - **Goal:** A working concept on paper, including alternatives

EP-CEPC-DR-2018-XX **IHEP-EP-2018-XX IHEP-TH-2018-XX**

CEPC

Conceptual Design Report

Volume II - Physics & Detector

The CEPC Study Group Fall 2018

Final remarks **Significant work done towards the CEPC Detector CDR *** Two significantly different detector concepts are emerging **High-magnetic field (3 Tesla):** PFA-oriented — with TPC or full-silicon tracker **Low-magnetic field (2 Tesla):** with drift chamber and dual readout calorimeter ***** Key technologies are under R&D and put to prototyping: **X** Vertex detector, TPC, calorimeters, magnets *e.g. Drift chamber, dual readout calorimeter and muon chamber *****CEPC funding adequate for required R&D program * Support from several sources in China: NSFC, MOST, etc International collaboration expanding

- International colleagues getting more heavily involved, participating in CDR
- 🗱 INFN, SLAC, Iowa State Univ., Belgrade, LLR, IPNL, LC-TPC, Liverpool, Oxford, Barcelona, etc...
 - **CDR Expected final release: Early Fall 2018**
 - From 2018-2022, CEPC TDR will be finished

Thank you for the attention!

