CEPC

Overview of Completion of CEPC Accelerator

J. Gao On behalf of CEPC Accelerator Team

Institute of High Energy Physics CAS, Beijing

CEPC-SppC IAC Open Meeting during ICHEP2018 July 6, 2018, ICHEP, Seoul, Korea

Contents

- CEPC CDR accelerator design goals
- CEPC CDR overall design concept and path from Pre-CDR to CDR completion
- CEPC alternatives and new ideas
- CEPC CDR accelerator hardwares and R&D towards TDR
- CEPC Industry Consortium and international collaboration
- Conclusions

CEPC – The Physics Case

Lots of questions with the Higgs boson (+ Z, W)

Is H(126) the SM Higgs as expected? Is it fundamental? Does it cause SSB?

Is the vacuum stable?

Naturalness – what form and what energy scale?

Is H(126) connected to dark matter/energy? How (if yes)?

• Full exploration of H(126) is an important path to finding new physics

• Precision measurement of the Z, W bosons, by an order of magnitude or

more, is another way to probe new physics

• CEPC: 1 M H(126) events, >10¹⁰ Z, W events will allow us to reach the necessary precision

CEPC Design – Higgs Parameters

Parameter	Design Goal
Particles	e+, e-
Center of mass energy	2*120 GeV
Luminosity (peak)	>2*10^34/cm^2s
No. of IPs	2

CEPC Design – Z-pole Parameters

Parameter	Design Goal
Particles	e+, e-
Center of mass energy	2*45.5 GeV
Integrated luminosity (peak)	>10^34/cm^2s
No. of IPs	2
Polarization	to be considered in the second round of design

*Be noted that here the luminosities are the lowest reuigrement to accomodate different collider schemes

CEPC CDR Accelerator Chain and Systems

CEPC Four Options Evoluting towards CDR

CEPC 100km circumference was decided by CEPC SC based on the recommendation from IAC in Nov. 2016
 CEPC baseline and alternative options have been decided on Jan. 14, 2017

CEPC SRF Design for H,W, and Z

- Higgs factory as first piority (fully partial double ring, with common SRF system for e+ and ebeams)
- W and Z factories are incorperated by beam swithyard (W and Z factories are double ring, with independent SRF system for e+ and e- beams)
- Higgs factory baseline SR per beam 30 MW to Minimize AC power

Economic CEPC baseline design as Higgs factory:

- W, Z factories incoperated with the same SRF system hardwares by using beam switchyard to change from Higgs factory and W, Z factories
- Synchrotron radiation power per beam at Higgs energy is set to 30MW to minimize AC power consumption

Collider Schemes vs Luminosity Potentials

CEPC Accelerator from Pre-CDR to CDR

CEPC accelerator CDR completed in June 2018 (to be printed in July 2018)

Mini-Review Workshop of CEPC-SPPC CDR (Nov. 4-5, 2017, IHEP)

CEPC-SPPC CDR Mini-review members

Name (alphabetical order)		
Anton Bogomyakov	BINP	Russia
Brian Foster	Oxford U.	U.K.
Eugene Levichev	BINP	Russia
Kexin Liu (刘克新)	Peking U.	China
Ernie Malamud	Fermilab	USA
Kazuhito Ohmi	KEK	Japan
Katsunobu Oide	CERN / KEK	Switzerland
Carlo Pagani	U. of Milan /	INFN Italy
John Seeman	SLAC	USA
Sergey Sinyatkin	BINP	Russia
Mike Sullivan	SLAC	USA
Chuanxiang Tang(唐传祥) Tsinghua U	.China
Lin Wang (王林)	USTC	China
Xiangqi Wang(王相綦)	USTC	China
Akira Yamamoto	KEK	Japan

Sunday, November 5			
08:30 - 09:00 09:00 - 09:30	SRF BE power source	Jiyuan Zhai Zusheng Zhou	
09:30 - 10:00	Cryogenic system	Shaopeng Li	
10:00 - 10:30	Magnet	Fusan Chen	
10:30 - 11:00	Coffee (30')		

Informal Mini-Review of CEPC-SPPC CDR

November 4 – 5, 2017, IHEP, Main Building, Room A415

Agenda (draft v2. 09/14/2017)

	Saturday, November 4	
08:30 - 08:35	Welcome	Yifan <mark>g</mark> Wang
08:35 - 09:10	Overview of beam dynamics	Chenghui Yu
09:10-09:40	Parameters	Dou Wang
09:40 - 10:10	Optics	Yiwei Wang
10:10 - 10:40	Dynamic aperture	Yuan Zhang
10:40 - 11:10	Coffee (30')	
11:10 - 11:40	Beam-beam	Yuan Zhang
11:40 - 12:10	Instabilities	Na Wang
12:10 - 12:40	Machine-detector interface	Sha Bai
12:40 - 14:00	Lunch	
14:00 - 14:30	Injection and extraction	Xiaohao Cui
14:30 - 15:00	Booster	Tianjian Bian
15:00 - 15:30	Linac and sources	Cai Meng
15:30 - 16:00	Coffee (30')	
16:00 - 16:30	Synchrotron radiation	Yadong Ding
16:30 - 17:00	Overview of SPPC	Jingyu Tang
17:00 - 17:30	SC magnet for SPPC	Qingjin Xu
17:30 - 18:30	Discussion	All
19:00	Dinner	

International Review of CEPC CDR (June 28-30, 2018, IHEP)

International Review of CEPC CDR

June 28 – 30, 2018, IHEP, Main Building, Room A415

Agenda

	Thursday, June 28		
	Chair: K. Oide		
8:30-9:00	Committee Executive Session		
	Chair: Qing Qin		
9:00-9:05	Welcome	Yifang Wang	
9:05-9:20	Overview of CEPC	Jie Gao	
9:20-9:35	Overview of beam dynamics	Chenghui Yu	
9:35-10:05	CEPC collider lattice design	Yiwei Wang	
10:05-10:35	CEPC beam-beam and DA	Yuan Zhang	
	Coffee break(30')		
	Chair: K. Oide		
11:05-11:35	Instabilities	Na Wang	
11:35-12:05	Machine-detector interface	Sha Bai	
12:05 - 14:00	Lunch break		
	Chair: K. Oide		
14:00-14:30	Booster	Dou Wang	
14:30-15:00	Injection and extraction	Xiaohao Cui	
15:30-16:00	Linac injector	Cai Meng	
	Coffee break(30')		
16:30-18:30	Committee Executive Session		
19:00	Dinner of Committee		

	Chair: K. Oide		Saturday, June 30			
8:30-9:00 SRF 9:00-9:30 RF 9:30-10:00 Cry 10:00-10:20 CEF 10:20-10:40 CEF 11:10-11:30 SC 1 11:30-12:00 Pov 12:00-12:30 Vac	SRF system RF power source Cryogenic system CEPC collider ring Magnet CEPC booster ring magnet Coffee break(30') SC magnet for CEPC IR Power supplies Vacuum	8:30-9:00 9:00-9:30 9:30-10:00 10:00-10:30	Chair: K. Oide Survey and alignment Mechanics Conventional facilities Site investigation Coffee break (30') Discussion with CEPC team	Xiaolong Wang Haijing Wang Guoping Lin Yu Xiao		
12:30 - 14:00		12:00 - 14:00	Lunch break			
14:00-14:30 14:30-15:00 15:00-15:30 15:30-16:00 16:30-18:30	Chair: K. Oide Instrumentation Control Synchrotron radiation Radiation shielding Coffee break(30') Committee Executive Sessio	14:00-16:00 16:30-17:30	Committee Executive Session Coffee break (30') Close out			
	Dipr		Banquet			

Review Committee Members:

ESY
BINP
CERN/KEK
KEK
INFN
INFN
KEK/Tohoko University
KEK
ESS
CERN
KEK
SINAP

International Review Report (draft) of CEPC CDR (June 28-30, 2018, IHEP)

International Review of CEPC Conceptual Design Report

- Accelerator Design -

June 28 – 30, 2018 IHEP, Beijing

This is the review report of the accelerator part of the CEPC CDR. The review is done for the presentations based on the draft version of the CDR. Extensive discussions have been held between the review committee members and the CEPC team during the review meeting.

General remarks

The Circular Electron-Positron Collider (CEPC) is a very ambitious and important project aimed at various physics at ZH (Ebeam = 120 GeV), W± (80 GeV), and Z (46 GeV) production which would produce the highest luminosity ever achieved by a collider in the world. The Superconducting Proton-Proton Collider (SppC) is planned as the second stage of the project using the same collider tunnel to explore the energy frontier of elementary particle physics.

The Review Committee unanimously congratulates the CEPC team on the completion of the CDR, with remarkable successes in various aspects of the design. The progress since the pre-CDR has been a major step in the project, especially the full double-ring scheme, lattice design, and various beam dynamics with beam-beam effects and collective phenomena. The design work on each system has verified the basic feasibility of the project, including the superconducting RF, normal and superconducting magnets, vacuum system, injectors with a booster synchrotron and a linac, instrumentation, control, safety, civil engineering, etc.

International Review Report (draft) of CEPC CDR (June 28-30, 2018, IHEP)

The Committee believes that the CDR has already reached a sufficient level of maturity to allow approval to proceed to a Technical Design Report. On the other hand, we think that this machine has more potential for further extensions, including:

- (1) Experiments for ttbar production (Ebeam ≈ 180 GeV);
- (2) Even higher luminosity (~x10) at Z and W±;
- (3) Higher beam current, up to 50 MW/beam synchrotron radiation loss;
- (4) More interaction points;
- (5) Polarised beams.

These extensions will be achievable if the machine preserves the possibility to implement these possibilities by relatively small investments, such as longer quadrupole magnets, a less compressed layout around the interaction point (IP) with shallower bends, and sufficient length for the RF section. Actually, such improvements may even reduce the operation costs. The committee encourages the CEPC team to explore and preserve these possibilities, since once CEPC is built, no second machine with the same scale is likely to be built in the world.

CEPC CDR Parameters

	Higgs	W	Z (3T)	Z (2T)		
Number of IPs		2		•		
Beam energy (GeV)	120	80	45.5			
Circumference (km)		100				
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.03	6		
Crossing angle at IP (mrad)		16.5×2				
Piwinski angle	2.58	7.0	23.	3		
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0			
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns-	+10%gap)		
Beam current (mA)	17.4	87.9	461.	0		
Synchrotron radiation power /beam (MW)	30	30	16.5			
Bending radius (km)		10.7				
Momentum compact (10-5)		1.11				
β function at IP β_x^* / β_v^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001		
Emittance $\varepsilon_x/\varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016		
Beam size at IP $\sigma_x/\sigma_v(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04		
Beam-beam parameters ξ_x / ξ_v	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072		
RF voltage V_{RF} (GV)	2.17	0.47	0.1)		
RF frequency f_{RF} (MHz) (harmonic)		650 (216816)				
Natural bunch length σ_z (mm)	2.72	2.98	2.42	2		
Bunch length σ_{z} (mm)	3.26	5.9	8.5			
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94	4		
Natural energy spread (%)	0.1	0.066	0.03	8		
Energy acceptance requirement (%)	1.35	0.4	0.2.	3		
Energy acceptance by RF (%)	2.06	1.47	1.7			
Photon number due to beamstrahlung	0.1	0.05	0.02	3		
Lifetime _simulation (min)	100					
Lifetime (hour)	0.67	1.4	4.0	2.1		
F (hour glass)	0.89	0.94	0.9)		
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1		

CEPC CDR Layout

CEPC Linac injector (1.2km, 10GeV)

CEPC MDI Layout and Parameters

- The Machine Detector Interface of CEPC double ring scheme is about ±7m long from the IP.
- The CEPC detector superconducting solenoid with 3 T magnetic field and the length of 7.6m.
- The accelerator components inside the detector without shielding are within a conical space with an opening angle of cosθ=0.993.
- The e+e- beams collide at the IP with a horizontal angle of 33mrad and the final focusing length is 2.2m
- Lumical will be installed in longitudinal 0.95~1.11m, with inner radius 28.5mm and outer radius 100mm.

CEPC CDR Design Status

CEPC Collider Ring

Parameter	Symbol	Unit	Goal	Status
Beam Energy	E	GeV	120	120
Circumference	С	km	100	100.006
Emittance	$\mathcal{E}_{\chi/\mathcal{E}_{Y}}$	nm⋅rad	1.21 / 0.0036	1.208 / -
Beta functions at IP	$\beta_{x/}\beta_y$	m	0.36 / 0.002	0.36 / 0.002
Energy acceptance	nergy acceptance △P/P		1.35	1.8
DA requirement	DA_{x}/DA_{y}	σ	13 / 12	20 / 20 (w/o errors)

* Z and W satisfies CDR requirement as well

CDR goal reached

CEPC Booster Design Status

Parameters	Design goals	Design results
Beam current (mA)	<0.8	0.54
Emittance in x (nm rad)	<3.6	3.1
Dynamic aperture for 0.5% off- momentum particles	<mark>>3</mark> σ	8.5σ
Energy acceptance	>1%	2.5%
Timing	Meet the top-up injection requirements	\checkmark

CDR goal

reached

CEPC Linac Injector CDR Status

Symbol Parameter Unit Goal **Status** GeV e- /e+ beam energy E_{e}/E_{e+} 10 10/10 **Repetition rate** Hz 100 100 **f**_{rep} ~1.875×10¹⁰ Ne-/Ne+ >6.25×10⁹ ~1.875×10¹⁰ e⁻ /e⁺ bunch population Ne-/Ne+ nC >1.0 1.0/3.0* 1.5×10^{-3} <2×10⁻³ Energy spread (e⁻/e⁺) σ_{F} 1.4×10^{-3} < 0.3 Emittance (e⁻ /e⁺) mm. mrad 0.005/0.12** GeV e⁻ beam energy on Target 4 4 e⁻ bunch charge on Target 10 10 nC

CEPC Power for Higgs and Z

	Sustem for Higgs Location and electrical demand(MW)					Total		
	(30MW)	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)
1	RF Power Source	103.8	0.15	5.8				109.75
2	Cryogenic System	11.62	0.68			1.72		14.02
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	47.21	11.62	1.75	1.06	0.26		61.9
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	31.79	3.53	1.38	0.63	1.2		38.53
10	General services	7.2		0.2	0.15	0.2	12	19.75
	Total	213.554	20.972	10.276	1.845	7.385	12	266.032

CEPC Cost Breakdwon (no detector)

266MW

149**MW**

	System for Z	Location and electrical demand(MW)						T-1-1
		Ring	Booster	LINAC	BTL	IR	Surface building	(MW)
1	RF Power Source	57.1	0.15	5.8				63.05
2	Cryogenic System	2.91	0.31			1.72		4.94
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	9.52	2.14	1.75	0.19	0.05		13.65
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices		0	0		4		4
9	Utilities	19.95	2.22	1.38	0.55	1.2		25.3
10	General services	7.2	·	0.2	0.15	0.2	12	19.75
	Total	108.614	9.812	10.276	0.895	7.175	12	148.772

CEPC Civil Enginnering Design (Funing 100km, example)

CEPC Tunnel Cross Sections, Detector and SCRF Regions

IP1 / IP3

IP2 / IP4--SCRF region

TUNNEL CROSS SECTION OF THE ARC AREA

Alterniative solution (example): A High Energy CEPC Injector Based on Plasma Wakefield Accelerator

- Driver/trailer beam generation through Photo-injector
- HTR PWFA with good stability (single stage TR=3-4, Cascaded stage 6-12, high efficiency)
- Positron generation and acceleration in an electron beam driven PWFA using hollow plasma channel (TR=1)

CEPC Accelerator Key Component Designs and Technologies R&D

The CEPC keycomponents hardware have been designed and R&Ds have been planed and execued on the way

Polarized electron gun

Super-laice GaAs photocathode DC-Gun

High current positron source

- bunch charge of ~3nC,
- 6Tesla Flux Concentrator peak magnetic field

SCRF system

- High Q cavity Max operation Q₀ = 2E10 @ 2
 K
- High power coupler 300kW (Variable)
- High efficiency CW klystron
 - Efficiency goal > 80%
- Low field dipole magnet (booster)
 - Lmag=5m, Bmin=30Gs, Errors <5E-4

• Vacuum system

- \Rightarrow 6m long cooper chamber
- \Rightarrow RF shielding bellows

• Electro-static separator

- ⇒ Maximum operating field strength: 20kV/cm
- ⇒ Maximum deflection: 145 urad
- Large scale cryogenics
 - \Rightarrow 12 kW @4.5K refrigerator, Oversized,
 - ⇒ Custom-made, Site integration

HTS magnet

- \Rightarrow Advanced HTS Cable R&D: > 10kA
- Advanced High Field HTS Magnet R&D: main field 12~12T

CEPC Funding

IHEP seed money 11 M CNY/3 years (2015-2017)

Increasing support for CEPC D+RDby NSFC 5 projects (2015): 7 projects(2016)

R&D	Funding - NSFC	
-----	-----------------------	--

3 h	10/00/02	010), / pi	0,000,2010,
EPC相关基金名称(2015-2016)	基金类型	负责人	承担单位
高精度气体径迹探测器及激光校正的研究 (2015)	重点基金	李玉兰/ 陈元柏	清华大学/ Tsinghu 高能物理研究所 IHEP
戈 像型电磁量能器关键技术研究(2016)	重点基金	刘树彬	中国科技大学 USTC
EPC局部双环对撞区挡板系统设计及螺线管场补偿 2016)	面上基金	白莎	高能物理研究所
目于顶点探测器的高分辨、低功耗SOI像素芯片的 于于关键问题的研究(2015)	面上基金	卢云鹏	高能物理研究所
去于粒子流算法的电磁量能器性能研究 (2016)	面上基金	王志刚	高能物理研究所
基于THGEM探测器的数字量能器的研究(2015)	面上基金	俞伯祥	高能物理研究所
禹粒度量能器上的通用粒子流算法开发(2016)	面上基金	阮曼奇	高能物理研究所
E离子反馈连续抑制型气体探测器的实验研究 2016)	面上基金	祁辉荣	高能物理研究所
EPC对撞区最终聚焦系统的设计研究(2015)	青年基金	王逗	高能物理研究所
川用耗尽型CPS提高顶点探测器空间分辨精度的研 E (2016)	青年基金	周扬	高能物理研究所
关于CEPC动力学孔径研究(2016)	青年基金	王毅伟	高能物理研究所

国家重点研发计划 项目预申报书 FY 2016

Ministry of Science and Technology Requested 45M RMB; 36M RMB approved

项目名称:	高能环形正负电子对撞机相关的物理和关键技 术预研究
所属专项:	
指南方向:	预先研究
推荐单位:	教育部
申报单位:(公章)	清华大学
16日4主1.	宣佰ウ

~60M CNY CAS-Beijing fund, talent

program

year 2017 funding request (32M) to MOST approved

Basic funding needs for carrying out the CEPC design and the R&D should be met by end of 2018

CEPC 650 MHz Cavity development

- Vertical test result: Q₀=4.0E10@19.2MV/m, which is close to the CEPC target (Q₀=4.0E10@22.0MV/m).
- Next, the CEPC target will be achieved by Ndoping and EP, etc.

Vertical test

N-doping Research High Q SC Cavity

- After N-doping, Q₀ increased obviously at low field for both 650MHz 1-cell cavities.
- 650S1: Q₀=7e10@Eacc=10MV/m. But Q₀ decreased quickly at high field (>10 MV/m) because of no BCP/EP after N-doping.
- 650S2: Quench at Q₀=6.9e10@Eacc=8.8MV/m.

Vertical test results of 650 MHz 1-cell cavities

- The key components of the EP machine have passed the factory acceptance test.
- The civil construction of the EP facility is on going, and the commissioning will be on Sep-Oct 2018.

The first EP facility in China

IHEP New SRF Infrastructure

- 4500 m² SRF lab in the Platform of Advanced Photon Source Technology R&D (PAPS), Huairou Science Park, Beijing.
- Mission to be World-leading SRF Lab for Superconducting Accelerator Projects and SRF Frontier R&D.
- Mass Production:
 - $200 \sim 400$ cavities & couplers test per year
 - 3 Vertical test 2 Horizontal test 20 cryomodules assembly and horizontal test per year.
- Construction : 2017 2020
- \Rightarrow 3 VT dewars, 2 HT caves,
- 500m2 Clean Room
- Shanghai city government decided to built Shanghai Coherent Light Facility(SCLF).
- 432 1.3 GHz cavities
- 54 Cryomodules •
- IHEP plans to provide > 1/3 of cavities and cryomodules, an excellent exercise for CEPC

N-doping/N-infusion furnace

Clean room

CEPC Collider and Booster Ring Conventional Magnets

CEPC collider ring magnets

	Dipole	Quad.	Sext.	Correct or	Total
Dual aperture	2384	2392	-	-	
Single aperture	80*2+2	480*2+17 2	932*2	2904*2	13742
Total length [km]	71.5	5.9	1.0	2.5	80.8
Power [MW]	7.0	20.2	4.6	2.2	34

The first and the last segments - sextupole combined

Dipole

Dipole

Booster ring low field magnets

Quantity	16320
Magnetic length(m)	4.711
Max. strength(Gs)	338
Min. strength(Gs)	28
Gap height(mm)	63
GFR(mm)	55
Field uniformity	5E-4

Sextupole

Vacuum System R&D

- The vacuum pressure is better than 2 x 10-10 Torr
- Total leakage rate is less than 2 x 10-10 torr.1/s.

Positron ring

Copper vacuum chamber (Drawing) (elliptic 75×56, thickness 3, length 6000) NEG coating suppresses electron multipacting and beam-induced pressure rises, as well as provides extra linear pumping. Direct Current Magnetron Sputtering systems for NEG coating was chosen.

- Function of the bellows module : allow thermal expansion of the chambers and for lateral, longitudinal and angular offsets due to tolerances and alignment,
- Providing a uniform chamber cross section to reduce the impedance seen by beam.
- The Finger contact force of RF shielded bellow is 125±25 g/Finger.

High Efficiency Klystron Development

Established "High efficiency klystron collaboration consortium", including IHEP & IE(Institute of Electronic) of CAS, and Kunshan Guoli Science and Tech.

- 2016 2018: Design conventional & high efficiency klystron
- 2017 2018: Fabricate conventional klystron & test
- 2018 2019 : Fabricate 1st high efficiency klystron & test
- 2019 2020 : Fabricate 2nd high efficiency klystron & test
- 2020 2021 : Fabricate 3rd high efficiency klystron & test

Parameters	Conventional efficiency	High efficiency
Centre frequency (MHz)	650+/-0.5	650+/-0.5
Output power (kW)	800	800
Beam voltage (kV)	80	-
Beam current (A)	16	-
Efficiency (%)	~ 65	> 80

Mechanical design of conventional klystron

 \Rightarrow 73%/68%/65% efficiencies for 1D/2D/3D

High Field Magnet Based on HTS Material

- Huge impact If advanced HTS materials (IBS) can be used for 10-20T magnets
 - Huge cost reduction of high field magnets
 - Huge applications in other area and industry
- Fe-based HTS material (IBS)
 - Advantages: Metal, easy to process; Isotropic; Cheap in principle
 - Good start at CAS
 - World highest Tc Fe-based materials
 - World first ~ 115 m Fe-based SC conductor: 12000 A/cm² @ 10 T
- A collaboration on "advanced HTS materials " established
 - IOP, USTC, IEE, SC conductor companies
 - Two approaches:
 - IBS
 - ReBCO & Bi-2212

CAS has allocated 25Million RMB on HTS and ~200Million RMB will be allocated in 2018

High Field Magnet R&D for SppC

Magnet development for HL-LHC (exercise of the dipole magnet)

• CERN-IHEP collaboration on HiLumi LHC magnets

- 1) Qinhuangdao, Heber Province (Completed in 2014)
- 2) Huangling, Shanxi Province (Completed in 2017)
- 3) Shenshan, Guangdong Province(Completed in 2016)

4) Baoding (Xiong an), Hebei Province (Started in August 2017)

5) Huzhou, Zhejiang Province (Started in March 2018)

6) Chuangchun, Jilin Province (Started in May 2018)

CEPC Industrial Promotion Consortium (CIPC)

Established in Nov. 7, 2017

1) Superconduting materials (for cavity and for magnets)

- 2) Superconductiong cavities
- 3) Cryomodules
- 4) Cryogenics
- 5) Klystrons
- 6) Vacuum technologies
- 7) Electronics
- 8) SRF
- 9) Power sources
- 10) Civil engineering
- 11) Precise machinary.....

More than 50 companies joined in first phase of CIPC, and more will join later....

CEPC International Collaboration Status-1 International collaboration experts in the CEPC study team:

- All accelerator subsystem working groups have established data base of potential international collaboration experts
- All accelerator subsystems have at least one international collaboration expert in the subsystem working groups

International collaboration with major international labs:

- ✓ IHEP-BINP (Russia) MoU (Jan 2016) (on CEPC collider lattice design, Z-pole polariztion)
- ✓ IHEP-KEK (Japan) MoU (Sept 2017) (on all systems of Super KEK B accelerators, good reference)
- ✓ IHEP-MEPhI (Russia) (Nov 2017) (CEPC SCRF)
- ✓ IHEP-IEF (University of Rostock, Rostock, Germany) (Jan 2018) (CEPC SCRF)
- ✓ IHEP-Jlab (USA) MoU update is considered (CEPC-SppC-ep)
- ✓ With CERN and Dubna high level collaboration will progress

More than 20 MoU in general

CEPC International Collaboration Status-2

The first CEPC-SppC international Collaboration Workshop Nov 6-8, 2017, IHEP, Bejing

http://indico.ihep.ac.cn/event/6618

The the third CEPC-SppC International Advisory Committee Meeting, Nov 8-9, 2017, Beijing

IAS Higgh Energy Physics Workshop (Since 2015) http://iasprogram.ust.hk/hep/2018

Workshop on the Circuar Electron Positron Collider-EU edition May 24-26, 2018, Università degli Studi Roma Tre, Rome, Italy <u>https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=14816</u>

Conclusions

- The study path from CEPC Pre-CDE to CEPC CDR baseline and alternative choice has been overviewed
- CEPC Accelerator CDR has been completed with all systems reaching the CDR design goals with new ideas beyond CDR
- CEPC hardware design and key technologies' R&D plan are ready for full TDR phase

Thanks go to

CEPC accelerator team and international collaborators

Thank you for your attention