Simulation - Performance Study for the CEPC CDR

Mangi Ruan On behalf of the CEPC Simulation Study Institute of High Energy Physics, CAS, Beijing ICHEP Satellite meeting

Basic ingredients

Performance

- Determined by
 - Detector geometry
 - Reconstruction algorithm
- Characterized at
 - Physics Objects
 - Higgs Signal
 - Benchmark Physics Analyses

Two classes of Concepts

- PFA Oriented concept using High Granularity Calorimeter
 - + TPC (ILD-like, **Baseline**)
 - + Silicon tracking (SiD-like)
- Low Magnet Field Detector Concept (IDEA)
 - Wire Chamber + Dual Readout Calorimeter

https://indico.ihep.ac.cn/event/6618/

https://agenda.infn.it/conferenceOtherViews.py?view=standard&confId=14816 06/07/2018

3

Geometry: APODIS (A PFA Oriented Detector for HIggS factory)

Feasibility analysis: TPC is OK for CEPC (2017 JINST 12 P07005)

	CEPC_v1 (~ ILD)	APODIS (Optimized)	Comments		
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement		
B Field	3.5 T	3 T	Requested by MDI		
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole		
ECAL Thickness	84 mm	84(90) mm	Optimized on Br(H->di photon) at 250 GeV		
ECAL Cell Size	5 mm	10 mm	Passive cooling request ~ 20 mm. 10 mm is required for EW measurements		
ECAL NLayer	30	30	Depends on the Silicon Sensor thickness		
HCAL Thickness	1.3 m	1 m	-		
HCAL NLayer	48	40	Optimized on Higgs mass resolution with jet final states		

APODIS

- Operational at CEPC Collision environment & Geometry parameter Optimized
- Significantly reduced Cost/Energy Consumption
 - ECAL power: 75 80%
 - Yoke weight: 60 -70%
 - Construction cost: 30%

See Joao's talk for details...

Reconstruction - PFA, Arbor

Performance at Lepton Kaon Photon Tau JET

Simulation-Reconstruction Chain with Arbor

Performance at Physics Objects

Eur. Phys. J. C (2018) 78:426 https://doi.org/10.1140/epjc/s10052-018-5876-z

8

06/07/2018

Performance at Higgs Signal: total visible mass at vvH events

Table 2. Benchmark resolutions ($\sigma/Mean$) of reconstructed Higgs boson mass, comparing to LHC results.

	$\mathrm{Higgs}\! ightarrow\mu\mu$	$ ext{Higgs} \rightarrow \gamma \gamma.$	Higgs→bb
CEPC (APODIS)	0.20%	$2.59\%^{1}$	3.63%
LHC (CMS, ATLAS)	${\sim}2\%~[19,~20]$	${\sim}1.5\%~[21,~22]$	${\sim}10\%~~[23,24]$

¹ primary result without geometry based correction and fine-tuned calibration. https://arxiv.org/abs/1806.04992

An analysis example: g(HTT) via qqH

91.2

91.2

ZZ

2000	- - - - - -			C.	EPC Prel + Tagge S+B F sig bkg	iminary d data it
Events/0. 000100	- - - -					
500 0	- - - - -	5				
		ο Ιο	g ₁₀ (F	PuĬ)		5

- Tau finding: di-tau system (double cone algorithm)
- The remaining particles \rightarrow di-jet system: invariant/recoil mass information
- Isolated tracks \rightarrow tau candidate: be distinguished by the VTX
- Final Accuracy: 0.9% (with total 46k signal events)

06/07/2018

Ph.D thesis of D. Yu

Higgs benchmark analyses...

Mostly done with CEPC-v1 geometry @ 250 GeV c.m.s...

Physics Potential

- The nature of Higgs boson & EWSB, flavor physics...
 - Higgs signal strengths (In κ-framework): roughly 1 order of magnitude better than HL-LHC
 - Absolute measurement to the Higgs boson: $\Gamma_{_{\rm H}} \sim 3\%$, Br(H \rightarrow exotic, invisible) ~ 10⁻³ 10⁻⁵
 - Improve EW measurement precision by at least 1 order of magnitude
 - Significant potential in flavor physics: Bs, Bc, ...

06/07/2018

PreCDR results – to be updated (CDR) soon 12

To do (personal wish list)

- Detector optimization:
 - New ideas: Time information...
 - Integration (DAQ, Trigger, Cooling, Mechanism)
 - Systematic understanding & control
 - Sub detector modeling & requirements
- Better reconstruction & Software
 - Identification of c-jets, gluon jets, and color singlets
 - Deep learning
 - Data preservation/framework, Parallel computing
- Analysis Phenomenology/theory:
 - EW, Differential, Flavor...
 - Theoretical uncertainties
 - New observables
- Synergies: physics potential & ongoing studies...

Summary

- Multiple IP two sets of detector concepts
- Particle Flow oriented design: the baseline for the CEPC CDR
 - High efficiency/accuracy reconstruction of all key physics objects
 - Clear Higgs signature in all SM Higgs decay mode
 - Mature software/reconstruction tool/team (thanks to linear collider studies)
- APODIS, Optimized for the CEPC collision environments
 - Significantly reduced B-Field (15%), #readout channels (75% in ECAL) & HCAL layer-thickness (20%), Yoke thickness & cost (15%/30% w.r.t CEPC-v1/ILD)
 - Same Higgs performance & enhanced Pid Performance
 - Iterate with hardware studies
- Todo:
 - A **LOOOOOOOOT** interesting/exciting topic!

- Your support/participation is crucial & more than welcome!

Thank you!

Example Working Points & Performance for Object identification (Preliminary)

	Efficiency	Purity	Mis-id Probability from Main Background
Leptons	99.5 – 99.9%	99.5 – 99.9% at Higgs Runs(c.m.s = 240 GeV), Energy dependent	$P(\pi^{\pm} \rightarrow leptons) < 1\%$
Photons* 99.3 – 99.9%		99.5 – 99.9% at Higgs Runs Energy Dependent	P(Neutron → γ) = 1-5%
Charged Kaons**	86 - 99%	90 – 99% at Z pole Runs (c.m.s = 91.2GeV, Track Momentum 2- 20 GeV)	$\mathbb{P}(\pi^{\pm} \rightarrow K^{\pm}) = 0.3 - 1.1\%$
b-jets	80%	90% at Z pole runs $(Z \rightarrow qq)$	P(uds → b) = 1% P(c → b) = 10%
c-jets	60%	60% at Z pole runs	P(uds → c) = 5% P(b → c) = 15%

New Physics Reach via dim-6 operators

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{ij} rac{\mathbf{y}_{ij}}{\mathbf{\Lambda} \sim 10^{14} \text{GeV}} (\overline{L}_i \widetilde{\mathbf{H}}) (\widetilde{\mathbf{H}}^{\dagger} L_j) + \sum_i rac{\mathbf{c}_i}{\mathbf{\Lambda}^2} \mathcal{O}_i \,.$$

$$\begin{split} & \mathcal{O}_{\mathsf{H}} = \frac{1}{2} (\partial_{\mu} |\mathsf{H}|^{2})^{2} & \mathcal{O}_{\mathsf{WW}} = g^{2} |\mathsf{H}|^{2} \mathcal{W}^{a}_{\mu\nu} \mathcal{W}^{a\mu\nu} & \mathcal{O}_{\mathsf{L}}^{(3)} = (i\mathsf{H}^{\dagger}\sigma^{a} \overset{\frown}{D}_{\mu} \mathsf{H}) (\overline{\Psi}_{L} \gamma^{\mu} \sigma^{a} \Psi_{L}) \\ & \mathcal{O}_{\mathsf{T}} = \frac{1}{2} (\mathsf{H}^{\dagger} \overset{\frown}{D}_{\mu} \mathsf{H})^{2} & \mathcal{O}_{\mathsf{BB}} = g^{2} |\mathsf{H}|^{2} \mathcal{B}_{\mu\nu} \mathcal{B}^{\mu\nu} & \mathcal{O}_{\mathsf{LL}}^{(3)} = (i\mathsf{H}^{\dagger}\sigma^{a} \overset{\frown}{U}_{\mathsf{L}}) (\overline{\Psi}_{L} \gamma^{\mu} \sigma^{a} \Psi_{L}) \\ & \mathcal{O}_{\mathsf{WB}} = gg' \mathsf{H}^{\dagger} \sigma^{a} \mathsf{H} \mathcal{W}^{a}_{\mu\nu} \mathcal{B}^{\mu\nu} & \mathcal{O}_{\mathsf{LL}}^{(3)} = (i\mathsf{H}^{\dagger} \overset{\frown}{D}_{\mu} \mathsf{H}) (\overline{\Psi}_{L} \gamma^{\mu} \sigma^{a} \Psi_{L}) \\ & \mathcal{O}_{\mathsf{WB}} = gg' \mathsf{H}^{\dagger} \sigma^{a} \mathsf{H} \mathcal{W}^{a}_{\mu\nu} \mathcal{B}^{\mu\nu} & \mathcal{O}_{\mathsf{L}} = (i\mathsf{H}^{\dagger} \overset{\frown}{D}_{\mu} \mathsf{H}) (\overline{\Psi}_{L} \gamma^{\mu} \Psi_{L}) \\ & \mathcal{O}_{\mathsf{HW}} = ig(\mathcal{D}^{\mu} \mathsf{H})^{\dagger} \sigma^{a} (\mathcal{D}^{\nu} \mathsf{H}) \mathcal{W}^{a}_{\mu\nu} & \mathcal{O}_{\mathsf{R}} = (i\mathsf{H}^{\dagger} \overset{\frown}{D}_{\mu} \mathsf{H}) (\overline{\psi}_{R} \gamma^{\mu} \psi_{R}) \\ & \mathcal{O}_{\mathsf{g}} = g_{\mathsf{s}}^{2} |\mathsf{H}|^{2} \mathcal{G}^{a}_{\mu\nu} \mathcal{G}^{a\mu\nu} & \mathcal{O}_{\mathsf{HB}} = ig'(\mathcal{D}^{\mu} \mathsf{H})^{\dagger} (\mathcal{D}^{\nu} \mathsf{H}) \mathcal{B}_{\mu\nu} \end{split}$$

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF)

18

Massive Boson Separation

06/07/2018

Jet Energy Resolution

CMS Reference: CMS-JME-13-004,

Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV

Higgs to WW, ZZ

Table 2. Benchmark resolutions ($\sigma/Mean$) of reconstructed Higgs boson mass, comparing to LHC results.

		$\mathrm{Higgs} \! ightarrow \! \mu \mu$	$ ext{Higgs} \rightarrow \gamma \gamma.$	$Higgs \rightarrow bb$	
	CEPC (APODIS) 0.20%		$2.59\%^{1}$	3.63%	
06/07/201	LHC (CMS, ATLAS)	${\sim}2\%~[19,~20]$	${\sim}1.5\%~[21,22]$	${\sim}10\%~~[23,24]$	

¹ primary result without geometry based correction and fine-tuned calibration. https://arxiv.org/abs/1806.04992

H to gluons: total visible mass

Table 1. Event selection efficiency for Higgs boson exclusive decay at CEPC with $\sqrt{s} = 240$ GeV.

	$\mu\mu$	$\gamma\gamma$	di_gluon	bb	сс	WW^*	ZZ^*
Total	45000	48000	48000	45000	46000	47000.	45000
$Pt_ISR < 1GeV$	_	95.52%	95.14%	95.37%	95.27%	95.19%	95.22%
$Pt_neutrino < 1 GeV$	_	-	89.35%	39.00%	66.30%	37.41%	41.42%
costheta < 0.85	-	-	67.27%	28.58%	49.23%	37.03%	40.91%

06/07/2018

Higgs Signal at APODIS

CEPC-RECO-2018-002 CEPC-Doc id 174, 175 $H \rightarrow \gamma \gamma$ at CEPC-v4/Simplified geometry

Asymmetric tails in CEPC-v4 induced by geometry defects need careful geometry corrections

Higgs to bb, cc, gg

