Performance of the Baseline detector for CEPC CDR

Three pillars

- Performance
- Determined by the detector geometry \& Reconstruction algorithm
- Be characterized at
- Physics Objects
- Higgs Signal
- Benchmark Physics Analyses

Reference design \& Arbor

Simulation-Reconstruction Chain with Arbor

Geometry: APODIS (A PFA Oriented Detector for HIggS factory)

Feasibility analysis: TPC is OK for CEPC (2017 JINST 12 P07005)

	CEPC_v1 $(\sim$ ILD $)$	APODIS $($ Optimized $)$	Comments
Track Radius	1.8 m	$>=1.8 \mathrm{~m}$	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	$84(90) \mathrm{mm}$	Optimized on Br(H->di photon) at 250 GeV ECAL Cell Size 5 mm 10 mm Passive cooling request $\sim 20 \mathrm{~mm} .10 \mathrm{~mm}$ is required for EW measurements ECAL NLayer HCAL Thickness HCAL NLayer 1.3 m 48

APODIS

- Operational at CEPC Collision environment \& Geometry parameter Optimized
- Significantly reduced Cost/Energy Consumption
- ECAL power: 75-80\%
- Yoke weight: 60-70\%
- Construction cost: 30\%

2015 PreCDR

2017 CDR

Performance at Physics Objects

Kaon

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps
At inclusive Z pole sample:
Conservative estimation gives efficiency/purity of $91 \% / 94 \%$ ($2-20 \mathrm{GeV}, 50 \%$ degrading +50 ps ToF)
Could be improved to $96 \% / 96 \%$ by better detector/DAQ performance (20% degrading +50 ps ToF)

Massive Boson Separation

CEPC-RECO-2017-002 (DocDB id-164),
CEPC-RECO-2018-002 (DocDB id-171),
Eur.Phys.J. C78 (2018) no.5, 426

Jet Energy Resolution

CMS Reference: CMS-JME-13-004,
Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV

Performance at Higgs Signal: total visible mass at vvH events

Table 2. Benchmark resolutions ($\sigma /$ Mean) of reconstructed Higgs boson mass, comparing to LHC results.

	Higgs $\rightarrow \mu \mu$	Higgs $\rightarrow \gamma \gamma$.	Higgs $\rightarrow \mathrm{bb}$
CEPC (APODIS)	0.20%	$2.59 \%^{1}$	3.63%
LHC (CMS, ATLAS)	$\sim 2 \%[19,20]$	$\sim 1.5 \%[21,22]$	$\sim 10 \%[23,24]$

[^0]
Higgs benchmark analyses...

Mostly done with CEPC-v1 geometry

$\sigma(\mathrm{ZH})$ measurements

$\mathrm{Br}(\mathrm{H} \rightarrow \mu \mu)$

$\mathrm{Br}(\mathrm{H} \rightarrow \mathrm{WW})$

$\sigma(\mathrm{vvH}) * \mathrm{Br}(\mathrm{H} \rightarrow \mathrm{bb})$

$\mathrm{Br}(\mathrm{H} \rightarrow \mathrm{TT})$

Summary

- The Particle Flow oriented detector is well established and serves as the baseline detector for the CEPC CDR studies
- High efficiency/accuracy reconstruction of all key physics objects;
- Clear Higgs signature in all SM Higgs decay mode
- Mature software/reconstruction tool/team
- APODIS, Optimized for the CEPC collision environments
- Significantly reduced B-Field (15\%), \#readout channels (75\% in ECAL) \& HCAL layer-thickness (20\%) \& cost (15\%/30\% w.r.t CEPC-v1/ILD)
- Same Higgs performance \& enhanced Pid Performance
- Iterate with hardware studies
- Todo:
- Physics study, especially flavor tagging \& EW measurements (t leptons)
- Towards the TDR, Integration, Sub detector modeling, Systematic Studies

Thank you!

H to gluons: total visible mass

Table 1. Event selection efficiency for Higgs boson exclusive decay at CEPC with $\sqrt{s}=240 \mathrm{GeV}$.

	$\mu \mu$	$\gamma \gamma$	di_gluon	bb	$c c$	$W W^{*}$	ZZ
Total	45000	48000	48000	45000	46000	47000	45000
Pt_ISR<1GeV	-	95.52%	95.14%	$95 . .37 \%$	95.27%	95.19%	95.22%
Pt_neutrino <1 GeV	-	-	89.35%	39.00%	66.30%	37.41%	41.42%
\mid costheta\| <0.85	-	-	67.27%	28.55%	49.23%	37.03%	40.91%

Higgs Signal at APODIS

- Tracks - Leptons \& Photons

CEPC-RECO-2018-002
CEPC-Doc id 174, 175

$\mathrm{H} \rightarrow \mathrm{YY}$ at CEPC-v4/Simplified geometry
Asymmetric tails in CEPC-v4 induced by geometry defects need careful geometry corrections

Higgs to bb, cc, gg

Higgs to WW, ZZ

Table 2. Benchmark resolutions (σ / Mean) of reconstructed Higgs boson mass, comparing to LHC results.

		Higgs $\rightarrow \mu \mu$	Higgs $\rightarrow \gamma \gamma$.	Higgs \rightarrow bb
	CEPC (APODIS)	0.20%	$2.59 \%^{1}$	3.63%
$06 / 28 / 18$	LHC (CMS, ATLAS)	$\sim 2 \%[19,20]$	$\sim 1.5 \%[21,22]$	$\sim 10 \%[23,24]$

${ }^{1}$ primary result without geometry based correction and fine-tuned calibration. https://arxiv.org/abs/1806.04992

[^0]: ${ }^{1}$ primary result without geometry based correction and fine-tuned calibration. https://arxiv.org/abs/1806.04992

