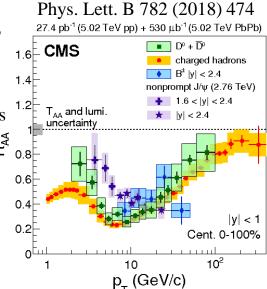


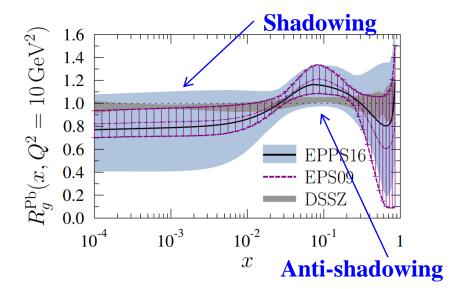
Open heavy flavor production in *p*Pb collisions with LHCb

Jiayin Sun (Tsinghua University)
On behalf of the LHCb collaboration
CLHCP2018

Outline

- Open heavy flavor in pPb collisions
- The LHCb detector
- LHCb *p*Pb datasets
- Prompt D^0 and Λ_c^+ production in pPb collisions at 5 TeV
- B^+ , B^0 and A_b^0 production in pPb collisions at 8.16 TeV
- Conclusion


Open heavy flavor in pPb collisions



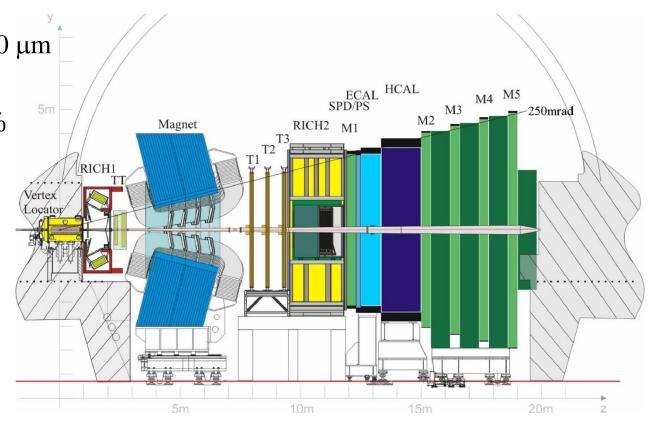
- Heavy flavor states are sensitive probes to study the properties of the QGP created in AA collision.
 - Produced in the early stage of the collisions
 - Significant heavy flavor meson suppression observed in central PbPb collisions
 - Large Λ_c^+/D^0 ratio measured in AuAu collisions
- Heavy flavor in pA collisions provide baseline measurements to disentangle cold nuclear matter effects from effects of hot and dense medium.

- Heavy flavor measurement down to p_T close to 0
- Separation of prompt and b decay components
- Cold Nuclear Matter effects
 - Initial state:
 - Modification of nuclear PDF
 - Gluon saturation
 - Multiple scattering of partons in the nucleus
 - Final state

LHCb detector

- A single arm forward spectrometer designed for the study of particles containing c or b quark
- Acceptance: $2 < \eta < 5$
- Vertex detector

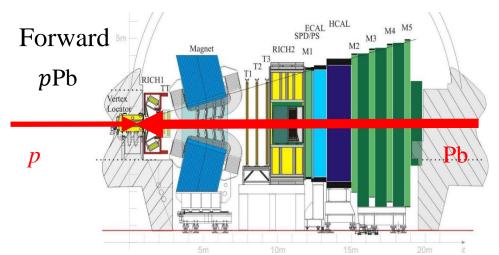
• IP resolution $\sim 20 \mu m$

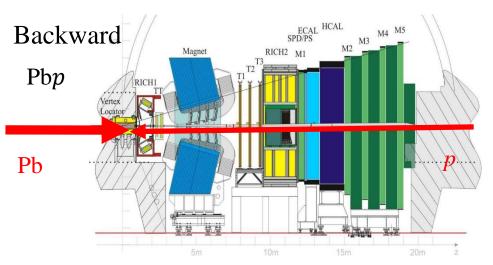

• Tracking system

•
$$\frac{\Delta p}{p} = 0.5\% - 1\%$$

(5-200 GeV/c)

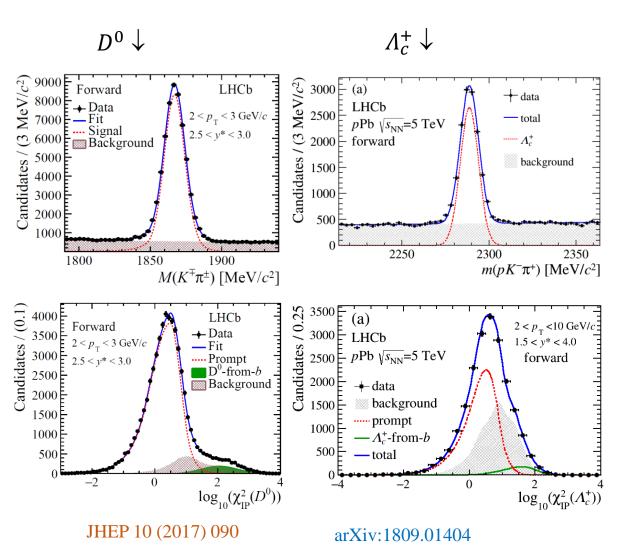
- RICH
 - $K/\pi/p$ separation
- Electromagnetic
 - + hadronic

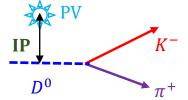

Calorimeters


Muon systems

LHCD

LHCb pPb datasets




- Rapidity Coverage
 - y^* : rapidity in nucleon-nucleon cms
 - $y_{\rm cms} = \pm 0.465$
 - Forward: $1.5 < y^* < 4.0$
 - Backward: $-5.0 < y^* < -2.5$
 - Common region: $2.5 < |y^*| < 4.0$
- $\sqrt{s_{NN}} = 5.02 \text{ TeV } (2013)$
 - $pPb (1.06 \text{ nb}^{-1}) + Pbp (0.52 \text{ nb}^{-1})$

- $\sqrt{s_{NN}} = 8.16 \text{ TeV } (2016)$
 - $pPb (13.6 \text{ nb}^{-1}) + Pbp (21.8 \text{ nb}^{-1})$

Prompt D^0 and Λ_c^+ measurement in pPb at 5 TeV

Reconstructed through decay channel:

$$\begin{array}{c} D^0 \rightarrow K^-\pi^+ \\ \Lambda_c^+ \rightarrow p K^-\pi^+ \end{array}$$

Inclusive D^0/Λ_c^+ signals from fitting invariant mass dist.:

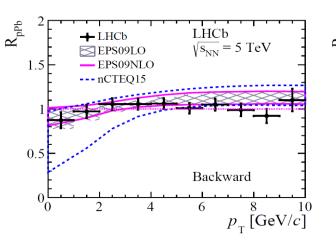
- Signal: Crystal Ball+Gaussian (D^0) Gaussin (Λ_c^+)
- Background: linear

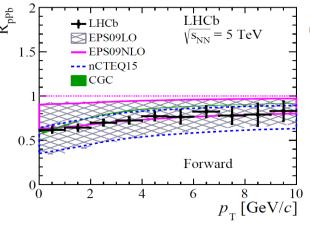
Prompt charm fraction extracted from fitting impact parameter dist.:

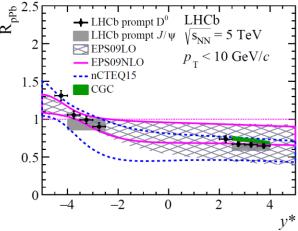
- Prompt: simulation
- from-b: simulation (D^0) sPlot+sim (Λ_c^+)
- Background: sideband in data

Prompt D^0 at 5 TeV nuclear modification factor in pPb

JHEP 10 (2003) 046

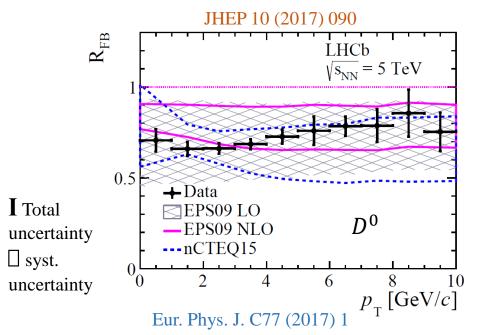

Eur. Phys. J. C77 (2017) 1 Comput. Phys. Commun. 184 (2013) 256

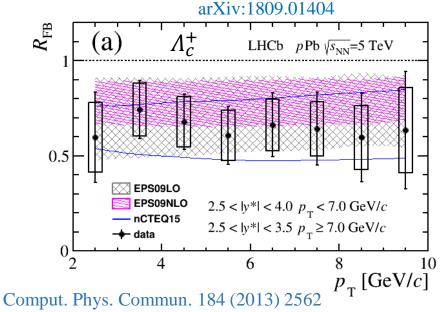

Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238


$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{d\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/dx}{d\sigma_{np}(y^*, p_T, \sqrt{s_{NN}})/dx}, A=208$$

- pp reference directly measured by LHCb
- R_{pPb} suppressed at forward rapidity
 - slight increase with increasing $p_{\rm T}$
- R_{pPb} closer to 1 at backward rapidity
 - hint of enhancement at large rapidity
- Measurements consistent with models with nPDF, CGC
- Data has smaller uncertainties than theory

JHEP 10 (2017) 090

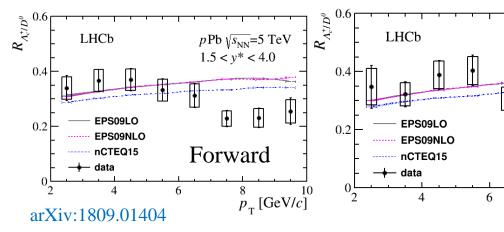


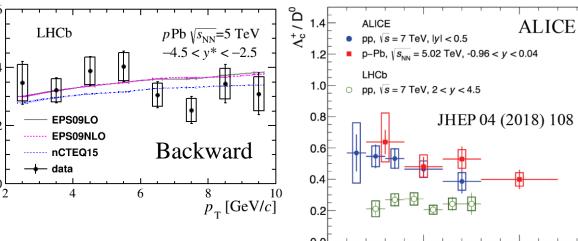


Prompt charm production at 5 TeV forward-backward production ratio

$$R_{\rm FB} = \frac{\sigma(+|y^*|, p_{\rm T})}{\sigma(-|y^*|, p_{\rm T})}$$

- $R_{\rm FB}$ does not need results from pp collisions.
- Compared to Helac-Onia calculations incorporating different nPDFs
 - Model parameterisation constrained by existing LHC pp cross-section measurements
- Consistent with nPDF predictions within uncertainty
- D^0 meson show smaller uncertainties than nPDF calculations



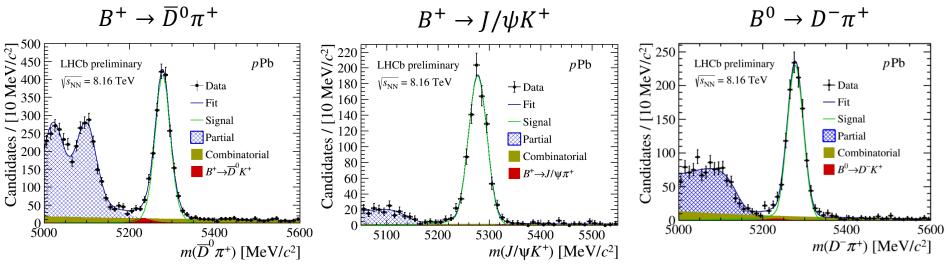

Charmed baryon/meson production ratio

$$R_{\Lambda_c^+/D^0}$$
 at 5 TeV

$$R_{\Lambda_c^+/D^0} = \frac{\sigma_{\Lambda_c^+}(y^*, p_{\rm T})}{\sigma_{D^0}(y^*, p_{\rm T})}$$

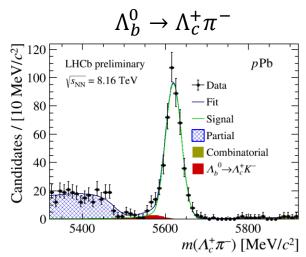
Eur. Phys. J. C77 (2017) 1 Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238

- Sensitive to charm hadronisation mechanisms
- Model based on measured pp cross-section
- nPDF effects mostly cancel
 - EPS09LO & EPS09NLO similar
 - nCTEQ15 slightly lower.
- Slight increase with increasing $p_{\rm T}$


- Forward:
 - Consistent at lower $p_{\rm T}$
 - Below theories at higher p_T
- Backward:
 - Consistent for all p_T
- Consistent with LHCb pp results ~0.3
- Lower than ALICE points in midrapidity for both *pp* and *p*Pb

 p_{\perp} (GeV/c)

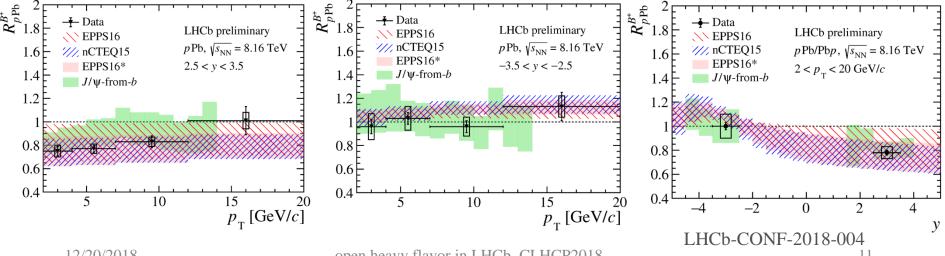
Beauty hadron production in pPb at 8.16 TeV



LHCb-CONF-2018-004

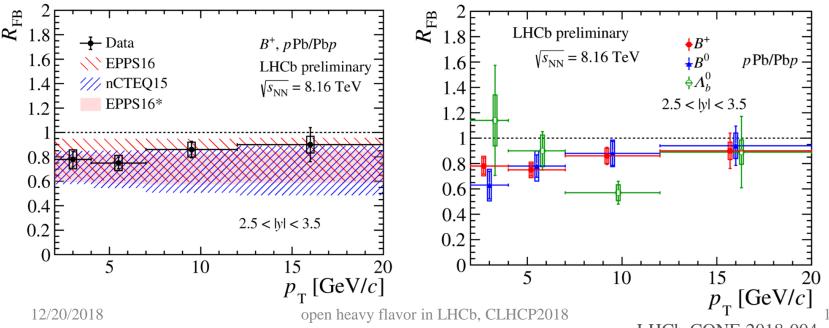
Reconstructed through exclusive hadronic decay modes:

Decay	pPb	Pbp
$B^+ \to \overline{D}{}^0 \pi^+$	1943 ± 58	1824 ± 64
${ m B}^+\! o J\!/\!\psiK^+$	883 ± 32	905 ± 33
$\mathrm{B}^0\! o D^-\pi^+$	1155 ± 39	886 ± 34
$\Lambda_b^0 \to \Lambda_c^+ \pi^-$	484 ± 24	397 ± 23


b-hadron production in pPb at 8.16 TeV B^+ nuclear modification factor

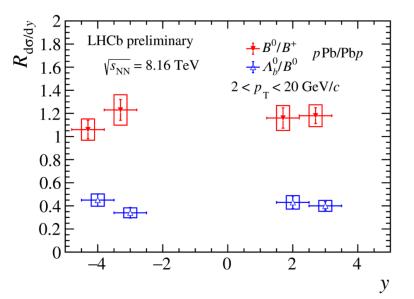
$$R_{pPb}(y^*, p_T) = \frac{1}{A} \times \frac{d\sigma_{pPb}(y^*, p_T, \sqrt{s_{NN}})/dx}{d\sigma_{pp}(y^*, p_T, \sqrt{s_{NN}})/dx}, A=208$$

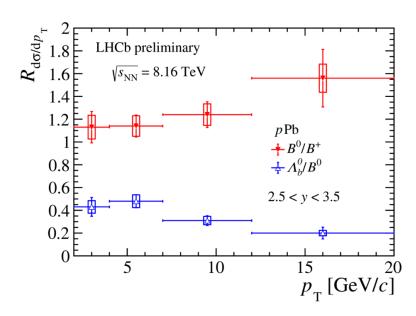
- pp reference interpolated between 7 & 13 TeV measurements from LHCb
- R_{pPb} suppressed at forward rapidity • increase with increasing $p_{\rm T}$
- R_{pPb} consistent with 1 at backward rapidity


- Measurements consistent with calculations with nPDFs EPPS16 and nCTEQ15
- Consistent with J/ψ -from-b
- Trend similar to $D^0 R_{nPb}$

b-hadron production in *p*Pb at 8.16 TeV B^+ , B^0 and Λ_b^0 forward-backward production ratio

- B⁺ production suppressed in the forward rapidity region compared to the backward.
- Limited statistics to observe clear trend wrt p_T
- Consistent with nPDF expectations
- Small uncertainty on $B^+ R_{FB}$
- Consistent $R_{\rm FB}$ between B^+ , B^0 and Λ_h^0

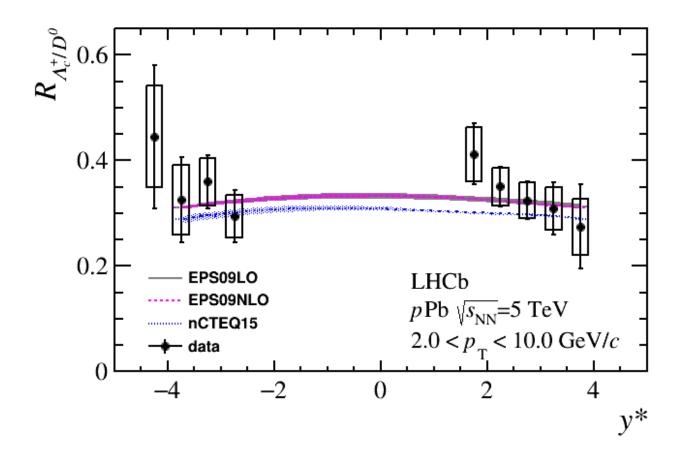



LHCb-CONF-2018-004

 $R_{\rm FB} = \frac{\sigma(+|y^*|, p_{\rm T})}{\sigma(-|y^*|, p_{\rm T})}$

b-hadron production in *p*Pb at 8.16 TeV Production cross-section ratio

- R_{B^0/B^+}
 - No significant dependence on rapidity and p_T
- $R_{\Lambda_b^0/B^0}$
 - ~0.4, no strong rapidity dependence
 - Similar values observed in LHCb pp measurement JHEP 08 (2014) 143
 - Decreases with $p_{\rm T}$ when $p_{\rm T} > 5~{\rm GeV}/c$


Conclusions

- Production cross-sections of open charm and beauty hadrons in *p*Pb collisions at 5 and 8.16 TeV measured by LHCb
 - Precise prompt D^0 meson measurement down to zero p_T . Suppression in the forward rapidity observed.
 - Prompt Λ_c^+/D^0 ratio consistent with theoretical calculations and pp results
 - First measurement of b-hadrons using exclusive hadronic modes. Similar suppression in the forward rapidity as D^0 meson.
 - First direct measurement of Λ_b^0 baryon in heavy ion collisions. Λ_b^0/B^0 ratio ~ 0.4

backup

