Anisotropic flow of identified particles in Pb–Pb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV with ALICE

Ya Zhu for the ALICE Collaboration

(Central China Normal University)

December 24

The 4th China LHC Physics Workshop (CLHCP 2018)

Anisotropic flow v_n

 Interactions among constituents transform the initial spatial anisotropy into momentum anisotropy

•
$$E \frac{d^3 N}{dp^3} = \frac{d^2 N}{2\pi p_T dp_T dp_T dy} \left\{ 1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n \left(\phi - \Psi_n\right)\right] \right\}$$

•
$$v_n = \langle \cos[n(\phi - \Psi_n)] \rangle$$

- *v_n* quantify the event anisotropy *v*₂ elliptic flow, *v*₃ triangular flow...
- v_n are sensitive to the evolution of the collision system

Results from JHEP:10.1007/JHEP09(2018)006

ALICE detector

• Pb–Pb at $\sqrt{s_{\rm NN}} = 5.02$ TeV

 \approx 60 \times 10^{6} minimum bias events

Tracks:

- $\mid\eta\mid$ < 0.8 (unidentified)
- |y| < 0.5 (identified)

• Inner Tracking System

Tracking, vertexing, triggering

 Time Projection Chamber

Tracking, vertexing, particle

identification based on specific

energy loss

Time-of-Flight

Particle identification from flight

time and track length

VOA and VOC

Triggering, centrality

determination, Q-vector

Particle identification

• For $p_{\rm T}$ < 4 GeV/c π^{\pm} , K^{\pm} , p are identified using combined TPC and TOF detector response

$$n\sigma_{PID}^2 = n\sigma_{TPC}^2 + n\sigma_{TOF}^2, \quad n\sigma_{PID} < 3$$

• For p_{T} > 4 GeV/c π^{\pm} , p are identified using TPC detector

$$\Delta_{\pi} = dE/dx - \langle dE/dx \rangle_{\pi}$$

 Track-by-track PID with purity > 80% [ALICE, Eur.Phys.J.Plus 131 (2016) no.5, 168]

Flow analysis methods

• v_n of identified particles is measured using the scalar product method

$$v_{n} = \frac{\langle \langle \mathbf{u}_{n} \cdot \mathbf{Q}_{n}^{VOC} \rangle \rangle}{\sqrt{\frac{\langle \mathbf{Q}_{n}^{VOC} \cdot \mathbf{Q}_{n}^{VOA} \rangle \langle \mathbf{Q}_{n}^{VOC} \cdot \mathbf{Q}_{n}^{TPC} \rangle}{\langle \mathbf{Q}_{n}^{VOA} \cdot \mathbf{Q}_{n}^{TPC} \rangle}}$$

where \mathbf{Q}_n is defined as $\mathbf{Q}n = \sum w_i e^{in\phi}$

Hits measured by V0C are used as reference particles (RPs)

 \blacktriangleright Large η gap between particles of interest and RPs to suppress non-flow

- v_n of π[±], K[±], p + p̄ is directly measured using the scalar product method
- v_n of φ, K⁰_S, Λ + Λ̄, Ξ⁻ + Ξ̄⁺, Ω⁻ + Ω̄⁺ is extracted using the v_n vs invariant mass method

$$v_{n}^{Tot}\left(m_{inv}\right) = v_{n}^{Sig} \frac{N_{Sig}\left(m_{inv}\right)}{N_{Tot}\left(m_{inv}\right)} + v_{n}^{Bg}\left(m_{inv}\right) \frac{N_{Bg}\left(m_{inv}\right)}{N_{Tot}\left(m_{inv}\right)}$$

Yields N_{Sig} and N_{Bg} are extracted from fitting the invariant mass distributions. v_n^{Sig} is extracted from fitting the v_n distribution.

• Reconstruction of ϕ , K^0_S , Λ , Ξ , Ω via decay products on statistical basis

$$\begin{array}{l} \phi \rightarrow K^+ + K^- \\ \mathbf{K}^0_{\mathbf{S}} \rightarrow \pi^+ + \pi^- \\ \overline{\mathbf{\Lambda}} \rightarrow \overline{p} + \pi^- \\ \overline{\mathbf{\Lambda}} \rightarrow \overline{p} + \pi^+ \\ \overline{\overline{\mathbf{L}}} \rightarrow \overline{\mathbf{\Lambda}} + \pi^- \rightarrow \overline{p} + \pi^- + \pi^- \\ \overline{\overline{\mathbf{L}}}^+ \rightarrow \overline{\mathbf{\Lambda}} + \pi^+ \rightarrow \overline{p} + \pi^+ + \pi^+ \\ \overline{\mathbf{\Omega}}^- \rightarrow \mathbf{\Lambda} + K^- \rightarrow \overline{p} + \pi^- + K^- \\ \overline{\mathbf{\Omega}}^+ \rightarrow \overline{\mathbf{L}} + K^+ \rightarrow \overline{p} + \pi^+ + K^+ \end{array}$$

v_2 and v_3 of identified particles

• Mass ordering of $v_2(p_{\rm T})$ and $v_3(p_{\rm T})$ is observed for $p_{\rm T}$ <2-3 GeV/c

 \bullet For 3 $< p_{\rm T} <$ 8-10 GeV/c, v_2 and v_3 of particles are grouped into mesons and baryons

- A clear mass ordering of $v_4(p_{
 m T})$ is observed for $p_{
 m T} <$ 2-3 GeV/c
- $3 < p_{\rm T} < 6$ GeV/c, v_4 of particles are grouped into mesons and baryons

n_q scaling test — p_{T}/n_q dependence

- Both v_n and p_T are scaled by the number of constituent quarks (n_q)
- NCQ scaling of v_2 and v_3 has not been accurately observed at the LHC

n_q scaling test — $(m_{ m T}-m_0)/n_q$ dependence

- NCQ scaling of v_2 illustrate significant deviations for $(m_{\rm T}-m_0)/n_q$ < 0.6–0.8 GeV/c.
- NCQ scaling of v_3 of the various identified hadron species approximately follow a common behaviour at low $p_{\rm T}$.

(Ya Zhu (CCNU) for ALICE)

CLHCP2018

Comparison with model calculations

[[ALICE Collaboration], JHEP 1809 (2018) 006]

- The v_n measurements are compared to hydrodynamical calculations (K, p in backup)
- Good agreement between v_n for $p_T < 1-3 \text{ GeV}/c$ (proton v_n is described fairly well up to $p_T = 3 \text{ GeV}/c$ (in backup))

Collision energy dependence of v_n

• No significant energy dependence is observed for the $p_{\rm T}$ differential v_n

- Anisotropic flow of identified particles have been measured in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=5.02~{\rm TeV}$
- Mass ordering of $v_n(p_{\rm T})$ is observed for $p_{\rm T}$ <2-3 GeV/c
- The NCQ scaling is broken both for v_2 and v_3 for all centrality intervals
- Good agreement with hydrodynamical calculations($p_{\rm T}<1~{\rm GeV}/c$ for π , K; $p_{\rm T}<3~{\rm GeV}/c$ for p)
- \bullet The measurements are compatible with those performed in Pb–Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV

n_q scaling test for identified particle v_4

Comparison with model calculations for K

Comparison with model calculations for p

Collision energy dependence of v_n (K_S^0, Λ, ϕ)

