Phenomenology for the Simplest Little Higgs Model

Ying－nan Mao（毛英男）
National Center for Theoretical Sciences（Hsinchu）
（Dated：December 21，2018）

Talk＠4th CLHCP（CCNU），mainly based on a recent paper：
K．Cheung，S．－P．He，Y．－N．Mao，P．－Y．Tseng，and C．Zhang，
＂Phenomenology of a Little Higgs Pseudo－Axion＂，Phys．Rev． D98， 075023 （2018）arXiv：1809．03809．

Introduction

- Little Higgs mechanism was proposed to solve the "little hierarchy" problem, or equivalently, the stability of EW scale under radiative corrections;
- As an example, the Simplest Little Higgs (SLH) model contains the minimal extended scalar sector, there is only one additional scalar (denoted as η), and its properties are related to the electro-weak symmetry breaking (EWSB);
- An accidental motivation: last year at the same conference (3th CLHCP, NJU), I gave a talk stating that in previous papers, the kinetic part of the SLH model was not canonically-normalized, which leads to wrong interactions, thus the properties of η and its phenomenology must be re-considered;
- I and my collaborators finished that in a series of papers: S.-P. He, Y.-N. Mao, C. Zhang, and S.-H. Zhu, Phys. Rev. D97, 075005 (2018) 1709.08929 ; K. Cheung, S.-P. He, Y.-N. Mao, C. Zhang, and Y. Zhou, Phys. Rev. D97, 115001 (2018) 1801.10066; S.-P. He, Y.-N. Mao, C. Zhang, and S.-H. Zhu, 1804.11333; K. Cheung, S.-P. He, Y.-N. Mao, P.-Y. Tseng, and C. Zhang, Phys. Rev. D98, 075023 (2018), 1809.03809;

1709.08929

1801.10066

1804.11333

1809.03809

Brief Review of the Model

D. E. Kaplan and M. Schmaltz, JHEP 0310 (2003) 039 hep-ph/0302049

- Global symmetry breaking $[\mathrm{SU}(3) \times \mathrm{U}(1)]^{2} \rightarrow[\mathrm{SU}(2) \times \mathrm{U}(1)]^{2}$ at scale $f \gg v$: 10 Nambu-Goldstone bosons are generated;
- Enlarged gauge group $\mathrm{SU}(3) \times \mathrm{U}(1) \rightarrow$ additional gauge bosons: there are totally 8 massive gauge bosons thus only 2 Goldstones bosons are left physical (SM-like Higgs boson H and a pseudoscalar η);
- Fermion doublets are also enlarged to triplets: additional heavy fermions.
- Two scalar triplets transform as $(\mathbf{1}, \mathbf{3})$ and $(\mathbf{3}, \mathbf{1})$ respectively;
- The nonlinear realization:

$$
\Phi_{1}=\exp \left(\mathrm{i} \frac{\Theta^{\prime}}{f}\right) \exp \left(\mathrm{i} \frac{t_{\beta} \Theta}{f}\right)\binom{\mathbf{0}_{1 \times 2}}{f c_{\beta}}, \quad \Phi_{2}=\exp \left(\mathrm{i} \frac{\Theta^{\prime}}{f}\right) \exp \left(-\mathrm{i} \frac{\Theta}{f t_{\beta}}\right)\binom{\mathbf{0}_{1 \times 2}}{f s_{\beta}}
$$

- The matrix fields are defined as:

$$
\Theta \equiv \frac{\eta}{\sqrt{2}}+\left(\begin{array}{cc}
\mathbf{0}_{2 \times 2} & h \\
h^{\dagger} & 0
\end{array}\right), \quad \Theta^{\prime} \equiv \frac{\zeta}{\sqrt{2}}+\left(\begin{array}{cc}
\mathbf{0}_{2 \times 2} & k \\
k^{\dagger} & 0
\end{array}\right)
$$

- t_{β} is the ratio between the VEVs of two scalar triplets;
- The $\mathrm{SU}(2)$ doublets are

$$
h \equiv\binom{\frac{1}{\sqrt{2}}(v+H-\mathrm{i} \chi)}{h^{-}}, \quad k \equiv\binom{\frac{1}{\sqrt{2}}(\sigma-\mathrm{i} \omega)}{k^{-}}
$$

- h is just the SM Higgs doublet, doublet k and singlets η, ζ are expected to be the other 6 Goldstone bosons and 5 of which are eaten by extra gauge bosons (note that after EWSB we need further canonically-normalization, see the details later);
- Gauge boson mass spectrum (to the leading order of v / f)

m_{A}	$m_{W^{ \pm}}$	m_{Z}	$m_{X^{ \pm}, Y^{0}, \bar{Y}^{0}}$	$m_{Z^{\prime}}$
0	$g v / 2$	$g v /\left(2 c_{W}\right)$	$g f / \sqrt{2}$	$\sqrt{\frac{2}{3-t_{W}^{2}}} g f$

- In this talk, we focus on the phenomenology of η which dominantly interact with t and its partner T, thus we don't discuss the vector properties, vector-scalar interaction, and scalar potential (how to obtain a nonzero v) in details;
- The scalar kinetic term can be expanded as $\mathcal{L} \supset \frac{1}{2}\left(\partial H^{2}+\partial \sigma^{2}+\mathbb{K}_{i j} \partial_{\mu} G_{i} \partial^{\mu} G_{j}\right)$;
- $G_{i / j}$ runs over $\eta, \zeta, \chi, \omega$, and when $v \neq 0, \mathbb{K} \neq \mathbb{I}_{4 \times 4} \rightarrow$ non-canonically normalized;
- We also have two point transition $\mathbb{F}_{p i} V_{p}^{\mu} \partial_{\mu} G_{i}$, which must be exactly canceled;
- These two problems can be solved together through a normalization procedure in CP-odd scalar sector: for canonically-normalized basis S_{i}, define the inner product $\left\langle S_{i} \mid S_{j}\right\rangle=\delta_{i j}$, we have $\left\langle G_{i} \mid G_{j}\right\rangle=\left(\mathbb{K}^{-1}\right)_{i j}$, and thus we can find the basis
- $\left(\tilde{\eta}, \tilde{G}_{i}\right)=\left(\frac{\eta}{\sqrt{\left(\mathbb{K}^{-1}\right)_{11}}}, \frac{\mathbb{R}_{p q} \mathbb{F}_{q i} G_{i}}{m_{p}}\right)$, we can check $\langle\tilde{\eta} \mid \tilde{\eta}\rangle=1,\left\langle\tilde{\eta} \mid \tilde{G}_{p}\right\rangle=0,\left\langle\tilde{G}_{p} \mid \tilde{G}_{q}\right\rangle=\delta_{p q} ;$
- This normalization procedure will modify the interactions including η.
- Choose the "anomaly free" embedding, [O. C. W. Kong, arXiv: hep-ph/0307250; J. Korean Phys. Soc. 45, S404 (2004); Phys. Rev. D 70, 075021 (2004)], the triplets $L^{T}=(\nu, \ell, \mathrm{i} N)_{L}, Q_{1}^{T}=(d,-u, \mathrm{i} D)_{L}, Q_{2}^{T}=(s,-c, \mathrm{i} S)_{L}, Q_{3}^{T}=(t, b, \mathrm{i} T)_{L} ;$
- $Q_{x}\left(Q_{1}, Q_{2}, N_{R}\right)=0, Q_{x}\left(Q_{3}\right)=1 / 3, Q_{x}\left(u_{R}\right)=2 / 3, Q_{x}\left(d_{R}\right)=-1 / 3, Q_{x}(L)=-1 ;$
- Lagrangian $\left[d_{R, j}\right.$ runs over $(d, D, s, S, b)_{R}$ and $u_{R, j}$ runs over $\left.(u, c, t, T)_{R}\right]$:

$$
\begin{aligned}
& \mathrm{i}\left(\lambda_{d, n}^{a} \bar{d}_{R, n}^{a} \Phi_{1}^{T}+\lambda_{d, n}^{b} \vec{d}_{R, n}^{b} \Phi_{2}^{T}\right) Q_{n}-\mathrm{i} \frac{\lambda_{u}^{j k}}{f} \bar{u}_{R, j} \operatorname{det}\left(\Phi_{1}^{*}, \Phi_{2}^{*}, Q_{k}\right)-\mathrm{i} \frac{\lambda_{b, j}}{f} \bar{d}_{R, j} \operatorname{det}\left(\Phi_{1}, \Phi_{2}, Q_{3}\right) \\
& \quad+\mathrm{i}\left(\lambda_{t}^{a} \bar{u}_{R, 3}^{a} \Phi_{1}^{\dagger}+\lambda_{t}^{b} \bar{u}_{R, 3}^{b} \Phi_{2}^{\dagger}\right) Q_{3}+\mathrm{i} \lambda_{N, j} \bar{N}_{R, j} \Phi_{2}^{\dagger} L_{j}-\mathrm{i} \frac{\lambda_{\ell}^{j k}}{f} \bar{\ell}_{R, j} \operatorname{det}\left(\Phi_{1}, \Phi_{2}, L_{k}\right)+\text { H.c. }
\end{aligned}
$$

- Fermion Spectrum:

$m_{\nu_{j}}$	$m_{\ell_{j}}$	$m_{N_{j}}$	$m_{u, c}$	m_{b}	m_{q}	m_{Q}
0	$y_{\ell_{j}} \frac{v}{\sqrt{2}}$	$\lambda_{N_{j}} f s_{\beta}$	$y_{u, c} \frac{v}{\sqrt{2}}$	$\lambda_{b, 3} \frac{v}{\sqrt{2}}$	$\lambda_{q} \frac{v}{\sqrt{2}}$	$\sqrt{\left\|\lambda_{q}^{a} c_{\beta}\right\|^{2}+\left\|\lambda_{q}^{b} s_{\beta}\right\|^{2}} f$

- $y_{\ell_{j}}$ is an eigenvalue of matrix $\lambda_{\ell}^{j k}, y_{u, c}$ is an eigenvalue of matrix $\lambda_{u}^{j k}$, index $q(Q)=$ $d(D), s(S), t(T)$ and $\lambda_{q} \equiv\left|\lambda_{q}^{a} \lambda_{q}^{b}\right| / \sqrt{\left|\lambda_{q}^{a} c_{\beta}\right|^{2}+\left|\lambda_{q}^{b} s_{\beta}\right|^{2}}$;
- Right-handed mixing $s_{2 \theta_{R, q}}=\sqrt{2} m_{q} s_{2 \beta} /\left(m_{Q} \kappa\right)$;
- The exact mixing angle depends on the relative magnitude of couplings $\lambda_{a, b}$;
- No right handed mixing in lepton sector (since we don't consider ν_{R});
- Left-handed mixing $[\sim \mathcal{O}(\kappa)$ to leading order of κ]

$$
\binom{\tilde{q}}{\tilde{Q}}_{L}=\left(\begin{array}{cc}
1 & -\delta_{q} \\
\delta_{q} & 1
\end{array}\right)\binom{q}{Q}_{L}, \quad\binom{\tilde{N}}{\tilde{\nu}}_{L}=\left(\begin{array}{cc}
1 & -\delta_{\nu} \\
\delta_{\nu} & 1
\end{array}\right)\binom{N}{\nu}_{L}
$$

- $\delta_{t}=\frac{\kappa}{\sqrt{2} s_{2 \beta}}\left(\pm\left|c_{2 \theta_{R, t}}\right|-c_{2 \beta}\right), \delta_{d / s}=-\frac{\kappa}{\sqrt{2} s_{2 \beta}}\left(\pm\left|c_{2 \theta_{R, d / s}}\right|-c_{2 \beta}\right)$, we denote them as $\delta_{q}^{ \pm}$;
- If we ignore m_{d} and m_{s}, we have $\delta_{d, s}^{+}=-\frac{\kappa t_{\beta}}{\sqrt{2}}$ and $\delta_{d, s}^{-}=\delta_{\nu}=\frac{\kappa}{\sqrt{2} t_{\beta}}$ for simplify;
- Fields with ${ }^{\sim}$ are mass eigenstates, parameterize the Yukawa interaction again as

$$
\begin{aligned}
\mathcal{L} \supset & -\sum_{f}\left(y_{H, f} \bar{f} f H+\mathrm{i} y_{\eta, f} \bar{f} \gamma^{5} f \eta\right)-\sum_{f / F} H\left(y_{H, f F} \bar{f}_{R} F_{L}+y_{H, F f} \bar{F}_{R} f_{L}+\text { H.c. }\right) \\
& -\sum_{f / F} \eta\left(\mathrm{i} y_{\eta, f F} \bar{f}_{R} F_{L}+\mathrm{i} y_{\eta, F f} \bar{F}_{R} f_{L}+\text { H.c. }\right)
\end{aligned}
$$

- F is the corresponding partner of f like above;
- Similarly, Q is the partner of SM quark q;
- The coefficients are listed in the table:

$\left.c_{H, f}\right\|_{f \in \mathrm{SM}}$	$c_{H, N}$	$c_{H, Q}$	$c_{H, F f}$	$c_{H, t T}$	$c_{H, d D / s S}$	
$\frac{m_{f}}{v}$	0	$-\frac{m_{q}^{2}}{v m_{Q}}$	$\frac{m_{Q} \delta_{q}}{v}$	$-\frac{m_{t}}{v}\left(\frac{\sqrt{2} \kappa}{t_{2 \beta}}+\delta_{t}\right)$	$\frac{m_{d / s}}{v}\left(\frac{\sqrt{2} \kappa}{t_{2 \beta}}-\delta_{d / s}\right)$	
$\left.c_{\eta, f}\right\|_{f=u, c, b, \ell, \nu}$	$c_{\eta, q}$	$c_{\eta, N}$	$c_{\eta, Q}$	$c_{\eta, q Q}$	$c_{\eta, N \nu}$	$c_{\eta, Q q}$
0	$-\frac{m_{q} \delta_{q}}{v}$	$-\frac{m_{N}}{\sqrt{2} f t_{\beta}}$	$\frac{m_{Q} \delta_{q}}{v}$	$\frac{m_{q}}{v}$	$\frac{m_{N} v}{2 f^{2} s_{\beta}^{2}}$	$-\frac{m_{Q}}{v}\left(\frac{\kappa^{2}}{2}+\delta_{q}^{2}\right)$

- The red coefficients are different from the results before canonically-normalization.

We choose the region $m_{\eta} \sim(450-750) \mathrm{GeV}$, reasons:

$(f=10 \mathrm{TeV}) t_{\beta}$ distribution

- $Z^{\prime} \rightarrow \ell^{+} \ell^{-}$direct search set a limit $f>8 \mathrm{TeV}$, Goldstone scattering unitarity requires $t_{\beta}<8.9$ and UV cutoff $\Lambda=\sqrt{8 \pi} f c_{\beta}$;
- Naturalness defined as $\Delta_{\mathrm{TOT}}^{\mu}=\left|\frac{\partial \ln m_{h}^{2}}{\partial \ln \mu_{U}^{2}}\right|, \Delta_{\mathrm{TOT}}^{\lambda}=\left|\frac{\partial \ln m_{h}^{2}}{\partial \ln \lambda_{U}}\right|$, $\Delta_{\text {TOT }}$ is the maximal one, μ_{U} and λ_{U} are defined at Λ;
- We choose the natural region with $f=8 \mathrm{TeV}$ and lighter m_{T};
- Mass relation can be used to derive t_{β} distribution:

$$
\begin{aligned}
& m_{\eta}^{2} s_{\alpha}^{2} \approx m_{h}^{2}-2 v^{2}\left(\Delta_{A}-2 A\right), \text { where } \alpha \equiv \sqrt{2}(v / f) / s_{2 \beta} \text { and } \\
& \left\{\begin{array}{l}
\Delta_{A}=\frac{3}{16 \pi^{2}}\left(\lambda_{t}^{4} \ln \frac{m_{T}^{2}}{m_{t}^{2}}-\frac{g^{4}}{8} \ln \frac{m_{X}^{2}}{m_{W}^{2}}-\frac{g^{4}}{16 c_{W}^{4}} \ln \frac{m_{Z}^{2}}{m_{Z}^{2}}\right) \\
A=\frac{3}{16 \pi^{2}}\left(\lambda_{t}^{4}-\frac{g^{4}}{8}-\frac{g^{4}}{16 c_{W}^{4}}\right)
\end{array}\right.
\end{aligned}
$$

Decay Widths of η

Channel	Decay Width
$\eta \rightarrow t \bar{t}$	$\frac{3 m_{n}}{8 \pi}\left(\frac{m_{t} \delta_{t}}{v}\right)^{2} \sqrt{1-\frac{4 m_{t}^{2}}{m_{n}^{2}}}$ (Domininant)
$\eta \rightarrow d D$	$\frac{3 m_{n}}{8 \pi}\left(\frac{m_{D}}{v}\right)^{2}\left(\frac{\kappa^{2}}{2}+\delta_{D d}^{2}\right)^{2}\left(1-\frac{m_{D}^{2}}{m_{\eta}^{2}}\right)^{2}\left(\text { if } m_{\eta}>m_{D}\right)$
$\eta \rightarrow N \bar{N}$	$\left.\frac{m_{\eta} m_{N}^{2}}{16 f^{2} t_{\eta}^{2}} \sqrt{1-\frac{4 m_{N}^{2}}{m_{\eta}^{2}}} \text { (if } m_{\eta}>2 m_{N}\right)$
$\eta \rightarrow N \nu$	$\frac{m_{\eta}}{8 \pi}\left(\frac{\kappa m_{N}}{2 f s_{\beta}^{2}}\right)^{2}\left(1-\frac{m_{N}^{2}}{m_{\eta}^{2}}\right)^{2}\left(\text { if } m_{\eta}>m_{N}\right)$
$\eta \rightarrow g g$	$\frac{m_{m_{8}^{3} \alpha_{s}^{2}}^{12 \pi^{3} v^{2}}}{}\left\|-\delta_{t} A_{1 / 2}\left(\tau_{t}\right)+\delta_{t} A_{1 / 2}\left(\tau_{T}\right)+\delta_{D d} A_{1 / 2}\left(\tau_{D}\right)+\delta_{S s} A_{1 / 2}\left(\tau_{S}\right)\right\|^{2}$
$\eta \rightarrow \gamma \gamma$	$\frac{m_{\eta}^{3} \alpha^{2}}{2304 \pi^{3} v^{2}}\left\|-4 \delta_{t} A_{1 / 2}\left(\tau_{t}\right)+4 \delta_{t} A_{1 / 2}\left(\tau_{T}\right)+\delta_{D d} A_{1 / 2}\left(\tau_{D}\right)+\delta_{S s} A_{1 / 2}\left(\tau_{S}\right)\right\|^{2}$
$m_{\eta}^{2} / 4 m_{f}^{2}$ and function $A_{1 / 2}(\tau) \equiv 2 f(\tau) / \tau$, where $f(\tau) \equiv \arcsin ^{2} \sqrt{\tau}$ for $\tau \leq 1$ and$f(\tau) \equiv-\frac{1}{4}\left[\ln \left(\left(1+\sqrt{1-\tau^{-1}}\right) /\left(1-\sqrt{1-\tau^{-1}}\right)\right)-\mathrm{i} \pi\right]^{2} \text { for } \tau>1 .$	

An example: $f=8 \mathrm{TeV}, m_{T}=m_{D}=m_{S}=3 \mathrm{TeV}, m_{N_{i}}>m_{\eta}$;
η Direct Production

- Up: $p p \rightarrow \eta$; Down: $p p \rightarrow t \bar{\eta} \eta$;
- For each case, choose $f=8 \mathrm{TeV}$;
- Choose K-factor 1 everywhere;
- Solve β through mass relation;
- Difficult to test at hadron colliders.

Test η through Cascade Decay

Decay Widths of T

Channel	Decay Width
$T \rightarrow W b$	$\frac{g^{2} \delta_{t}^{2} m_{T}^{3}}{64 \pi m_{W}^{2}}\left(1+\frac{m_{W}^{2}}{m_{T}^{2}}-\frac{2 m_{W}^{4}}{m_{T}^{4}}\right) F\left(0, \frac{m_{W}}{m_{T}}\right) \simeq \frac{\delta_{t}^{2} m_{T}^{3}}{16 \pi v^{2}}$
$T \rightarrow Z t$	$\frac{g^{2} \delta_{t}^{2} m_{T}^{3}}{128 \pi c_{W}^{2} m_{Z}^{2}}\left(1+\frac{m_{Z}^{2}-2 m_{t}^{2}}{m_{T}^{2}}+\frac{m_{t}^{4}+m_{t}^{2} m_{Z}^{2}-2 m_{Z}^{4}}{m_{T}^{4}}\right) F\left(\frac{m_{t}}{m_{T}}, \frac{m_{Z}}{m_{T}}\right) \simeq \frac{\delta_{t}^{2} m_{T}^{3}}{32 \pi v^{2}}$
$T \rightarrow H t$	$\frac{m_{T}^{3} \delta_{t}^{2}}{32 \pi v^{2}}\left(1+\frac{m_{t}^{2}-m_{H}^{2}}{m_{T}^{2}}\right) F\left(\frac{m_{t}}{m_{T}}, \frac{m_{H}}{m_{T}}\right) \simeq \frac{\delta_{t}^{2} m_{T}^{3}}{32 \pi v^{2}}$
$T \rightarrow \eta t$	$\frac{m_{T} m_{t}^{2}}{32 \pi v^{2}}\left(1+\frac{m_{t}^{2}-m_{\eta}^{2}}{m_{T}^{2}}\right) F\left(\frac{m_{t}}{m_{T}}, \frac{m_{\eta}}{m_{T}}\right) \simeq \frac{m_{T} m_{t}^{2}}{32 \pi v^{2}}\left(1-\frac{m_{\eta}^{2}}{m_{T}^{2}}\right)^{2}$

Function $F(x, y) \equiv \sqrt{(1+x+y)(1+x-y)(1-x+y)(1-x-y)}$.

Choose $f=8 \mathrm{TeV}$ and $m_{\eta}=500 \mathrm{GeV}$, note that β can be solved from the mass relation.

Decay Widths of $D / S / N$

Channel	Decay Width
$D \rightarrow W u$	$\frac{g^{2} \delta_{D d}^{2} m_{D}^{3}}{64 \pi m_{W}^{2}}\left(1+\frac{m_{V}^{2}}{m_{D}^{2}}-\frac{2 m_{W}^{4}}{m_{D}^{4}}\right) F\left(0, \frac{m_{W}}{m_{D}}\right) \simeq \frac{\delta_{D d}^{2} m_{D}^{3}}{16 \pi v^{2}}$
$D \rightarrow Z d$	$\frac{g^{2} \delta_{D d}^{2} m_{T}^{3}}{128 \pi c_{W}^{2} m_{Z}^{2}}\left(1+\frac{m_{Z}^{2}}{m_{D}^{2}}-\frac{2 m_{Z}^{4}}{m_{D}^{4}}\right) F\left(0, \frac{m_{Z}}{m_{D}}\right) \simeq \frac{\delta_{D d}^{2} m_{D}^{3}}{32 \pi v^{2}}$
$D \rightarrow H d$	$\frac{m_{D}^{3} \delta_{D d}^{2}}{32 \pi v^{2}}\left(1-\frac{m_{H}^{2}}{m_{D}^{2}}\right) F\left(0, \frac{m_{H}}{m_{D}}\right) \simeq \frac{\delta_{D d}^{2} m_{D}^{3}}{32 \pi v^{2}}$
$D \rightarrow \eta d$	$\frac{m_{D}^{3}}{32 \pi v^{2}}\left(\frac{v^{2}}{2 f^{2}}+\delta_{D d}^{2}\right)^{2}\left(1-\frac{m_{\eta}^{2}}{m_{D}^{2}}\right)^{2} \ll \Gamma_{D \rightarrow W u, Z d, H d}$

The cases for S and N are the same after corresponding replacements.

$m_{T}=m_{D}=m_{S}=3 \mathrm{TeV}, \quad m_{\eta}=500 \mathrm{GeV}, \quad \bar{T} j$ processes are also included for the right two figures.

- Choose $f=8 \mathrm{TeV}$ as usual;
- $\sigma_{p p \rightarrow F \bar{F} \rightarrow \eta+X}=\sigma_{p p \rightarrow F \bar{F}} \mathrm{Br}_{\eta}\left(2-\mathrm{Br}_{\eta}\right)$;
- $\sigma_{p p \rightarrow F j \rightarrow \eta+X}=\sigma_{p p \rightarrow F j} B r_{\eta}$;
- LHC very difficult, but we may expect for future $p p$ colliders with larger \sqrt{s}.

Summary and Discussion

- The SLH model is not a new model, but some of the interactions about η was incorrect, we re-derived the interactions and re-considered the phenomenology;
- After the correction, $Z H \eta$-vertex is not important $\left[\sim(v / f)^{3}\right]$, thus we should turn to the Yukawa sector: direct production or cascade decay;
- f is now pushed to $>8 \mathrm{TeV}$ and we choose the naturalness favored region $m_{\eta} \sim$ (450 - 750) GeV, where $\mathrm{Br}_{\eta \rightarrow t \bar{t}} \sim 1$;
- The direct production is impossible to test η, while it is possible through T cascade decay: the cross section can reach about $\mathcal{O}\left(10^{2}\right) \mathrm{fb}$ at $\sqrt{s}=100 \mathrm{TeV}$ proton colliders, though still very difficult at LHC;
- In many models, a similar pseudoscalar can exist, our analysis is just an example, but there may also be similar properties in other models;
- For example, $Z H \eta$-vertex is suppressed by $(v / f)^{3}$ is a model-independent property if η is a SM-singlet pseudoscalar, based on an EFT analysis; f is also pushed to a similar high scale for models with extra gauge bosons with similar properties [for example, the littlest Higgs model without T-parity];
- Light η scenario is disfavored by naturalness, but not excluded;
- This talk is a simplify version due to the time limit, I will present a complete version at CFHEP, IHEP (Dec. 27, Thursday, 14:30).

