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Introduction

e Little Higgs mechanism was proposed to solve the “little hierarchy” problem, or equiv-

alently, the stability of EW scale under radiative corrections;

e As an example, the Simplest Little Higgs (SLH) model contains the minimal extended
scalar sector, there is only one additional scalar (denoted as 7), and its properties are

related to the electro-weak symmetry breaking (EWSB);

e An accidental motivation: last year at the same conference (3th CLHCP, NJU), I
gave a talk stating that in previous papers, the kinetic part of the SLH model was
not canonically-normalized, which leads to wrong interactions, thus the properties of

1 and its phenomenology must be re-considered;



e [ and my collaborators finished that in a series of papers: S.-P. He, Y.-N. Mao, C.
Zhang, and S.-H. Zhu, Phys. Rev. D97, 075005 (2018) [1709.08929]; K. Cheung, S.-P.
He, Y.-N. Mao, C. Zhang, and Y. Zhou, Phys. Rev. D97, 115001 (2018) [1801.10066];
S.-P. He, Y.-N. Mao, C. Zhang, and S.-H. Zhu, 1804.11333; K. Cheung, S.-P. He, Y.-N.
Mao, P.-Y. Tseng, and C. Zhang, Phys. Rev. D98, 075023 (2018), [1809.03809];
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Brief Review of the Model

D. E. Kaplan and M. Schmaltz, JHEP 0310 (2003) 039 [hep-ph/0302049]

e Global symmetry breaking [SU(3) x U(1)]* — [SU(2) x U(1)]* at scale f > v: 10

Nambu-Goldstone bosons are generated;

e Enlarged gauge group SU(3) x U(1) —additional gauge bosons: there are totally 8
massive gauge bosons thus only 2 Goldstones bosons are left physical (SM-like Higgs

boson H and a pseudoscalar 7);

e Fermion doublets are also enlarged to triplets: additional heavy fermions.


https://arxiv.org/abs/hep-ph/0302049

e Two scalar triplets transform as (1,3) and (3, 1) respectively;

e The nonlinear realization:
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tp is the ratio between the VEVs of two scalar triplets;

The SU(2) doublets are

h is just the SM Higgs doublet, doublet £ and singlets 1, ( are expected to be the other
6 Goldstone bosons and 5 of which are eaten by extra gauge bosons (note that after

EWSB we need further canonically-normalization, see the details later);

Gauge boson mass spectrum (to the leading order of v/ f)
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In this talk, we focus on the phenomenology of n which dominantly interact with ¢ and
its partner 7', thus we don’t discuss the vector properties, vector-scalar interaction,

and scalar potential (how to obtain a nonzero v) in details;



The scalar kinetic term can be expanded as £ D 2(0H? + do? + K;;0,G;0"G;);
G/; runs over 1, (, x,w, and when v # 0, K # 4,4 —non-canonically normalized;
We also have two point transition F,;V/'0,G;, which must be exactly canceled;

These two problems can be solved together through a normalization procedure in
CP-odd scalar sector: for canonically-normalized basis S;, define the inner product

(Si|S;) = d,j, we have (G;|G;) = (K1), and thus we can find the basis

S — n RpgFqiGi Sy o= - ~ o~ B .
<U’Gl> - (\/(Kl)u’ mp )7 we can check (1[i)) =1, (i)|Gp) = 0, (G| Gy) = dpg;

This normalization procedure will modify the interactions including 7.



e Choose the “anomaly free” embedding, [O. C. W. Kong, arXiv: hep-ph/0307250; |J.
Korean Phys. Soc. 45, S404 (2004); Phys. Rev. D 70, 075021 (2004)], the triplets
LT = (v, 0,iN)r, QT = (d, —u,iD)r, Q} = (s, —¢,iS), QF = (¢,b,iT)y;

L Qx(QlaQQaNR) = 07@9&(Q3) = 1/37Qx(uR) = 2/3a Q:c(dR) = _1/3a Qx(L) = _1;

e Lagrangian [dg; runs over (d, D, s, S,b)g and upg; runs over (u,c,t,T)g]:
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Fermion Spectrum:
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Ye, is an eigenvalue of matrix )\j b , Yuc 18 an eigenvalue of matrix M* index ¢(Q)

d(D), 5(S), 4(T) and A, = “Ab|/\/])\“c[3\ + Nosss

Right-handed mixing sg, , = V2ms9s/(mok);
The exact mixing angle depends on the relative magnitude of couplings A, ;

No right handed mixing in lepton sector (since we don’t consider vg);



Left-handed mixing [~ O(k) to leading order of k]
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oy = «/5225 (%[capp, | — 28), bays = _ﬂzzﬁ <i|026R,d/s — 025>, we denote them as 9,

If we ignore my and mg, we have 5;,5 = —% and 0, , = 0, = \/gtﬁ for simplify;

Fields with “are mass eigenstates, parameterize the Yukawa interaction again as
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e [ is the corresponding partner of f like above;
e Similarly, @) is the partner of SM quark g;

e The coefficients are listed in the table:
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e The red coefficients are different from the results before canonically-normalization.



n-related Phenomenology

We choose the region m, ~ (450 — 750) GeV, reasons:

e e 7' — (¢~ direct search set a limit f > 8 TeV, Goldstone scat-
‘ ' tering unitarity requires tg < 8.9 and UV cutoft A = V87 feg;

2
e Naturalness defined as Afgp = ‘gl;;nh Aot = ‘211?1—7;5 ,

Arot is the maximal one, uy and Ay are defined at A;

my
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e e Mass relation can be used to derive ¢4 distribution:
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Decay Widths of 7

Channel Decay Width
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An example: f =8 TeV, mp = mp = mg =3 TeV, my, > m,;



1 Direct Production

o (pp-t) [fb]
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Difficult to test at hadron colliders.
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Test n through Cascade Decay

Decay Widths of T

Channel Decay Width
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Choose f = 8 TeV and m, = 500 GeV, note that 8 can be solved from the mass relation.
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Decay Widths of D/S/N

Channel Decay Width

252 3 2 4 2 3
g=6% . m m 2m m 0% g
D — Wu _647Ir)d2D (1 W w) F (O W) ~ %Da™D
My mD m

4 » mp 16702

$2 :
D — Hd m%é%d ( . m_%) F (0 m_H> N <5f)(,m,"f)
32mv2 m2 "mp ) T 32m0?

3 9 2 2 2
D —nd 32?32 <2U? + 5%)51) (1 - ::%) < 'powu,za,Ha
The cases for S and N are the same after corresponding replacements.




\ 100\ 100 i
—_ — 100
£ £ - = _. 10
2 ERRT o —14TeV ) — Ty )
% 100 Tev -g‘ ity F — ity F o
i ol - g ! E 1 i\
b & L Lo
E 0.01 ; 01 % 0.1 %
5] g 0.01
T 0.001 T 001
= 0.001
10_;.0 2.5 3.0 35 809% 25 3.0 35 20 25 30 35 T 20 25 30 3.5
my [TeV] my [TeV] mr [TeV] my [TeV]
A ~~ — & v
mr=mp=mg=3 TeV, m,=500 GeV, T'j processes are also included for the right two figures.
1000 e Choose f =8 TeV as usual;
£ £
) ’E;:B B o B .
£ g ® OppsFRon+X = Upp—)FFBrn(Q - Brn))
: :
= =
A & _ Br-
5 0.1 g L Opp—Fj—sn+X = Opp—Fj Tm
o [=9
£ 001 £ o001
0001 bS] OO e o0 LHC very difficult, but we may expect
mp [TeV] my [TeV] . .
N - for future pp colliders with larger /s.
mp=3 TeV, m,=500 GeV(left), mp=700 GeV( right)



Summary and Discussion

The SLH model is not a new model, but some of the interactions about 1 was incorrect,

we re-derived the interactions and re-considered the phenomenology;

After the correction, Z Hn-vertex is not important [~ (v/f)?], thus we should turn to

the Yukawa sector: direct production or cascade decay;

f is now pushed to > 8 TeV and we choose the naturalness favored region m, ~

(450 — 750) GeV, where Br,_,;; ~ 1;

The direct production is impossible to test 1, while it is possible through 7' cascade
decay: the cross section can reach about O(10%) fb at /s = 100 TeV proton colliders,
though still very difficult at LHC;



In many models, a similar pseudoscalar can exist, our analysis is just an example, but

there may also be similar properties in other models;

For example, Z Hn-vertex is suppressed by (v/f)? is a model-independent property if
1 is a SM-singlet pseudoscalar, based on an EFT analysis; f is also pushed to a similar
high scale for models with extra gauge bosons with similar properties [for example,

the littlest Higgs model without T-parity];
Light n scenario is disfavored by naturalness, but not excluded;

This talk is a simplify version due to the time limit, I will present a complete version

at CFHEP, IHEP (Dec. 27, Thursday, 14:30).






	Introduction
	Brief Review of the Model
	-related Phenomenology
	Decay Widths of 
	 Direct Production
	Test  through Cascade Decay
	Decay Widths of T
	Decay Widths of D/S/N

	Summary and Discussion

