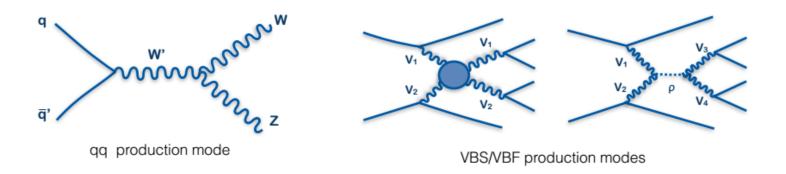


$WZ \rightarrow lvll$ resonance search


Miaoran Lu On behalf of the analysis team University of Science and Technology of China

2018/12/20

Paper: arXiv:1806.01532

Introduction

Using 36.1 fb⁻¹ of \sqrt{s} = 13 TeV pp data collected by the ATLAS experiment at the LHC during the 2015 and 2016 run periods.

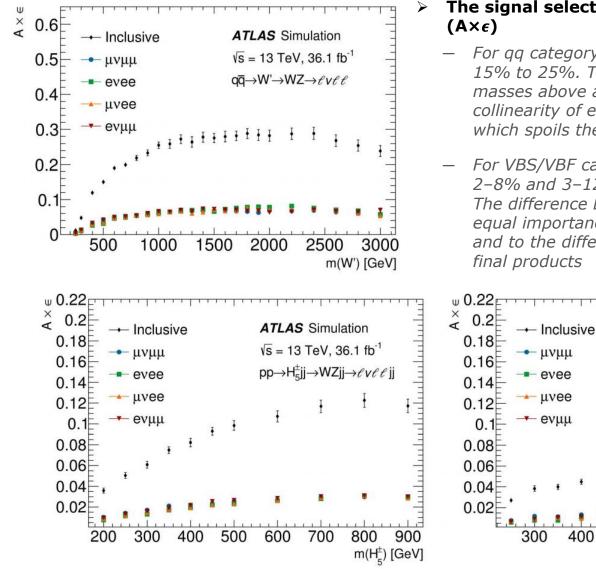
Aim of this analysis: fully leptonic WZ decay (e,µ) in exclusive qq and VBS/VBF production modes

- Clean signature:
 - 3 high pT, isolated leptons,
 - Missing transverse energy
- Backgrounds
 - WZ SM (dominant), ZZ, Z+jets, Z+γ, VVV and Top
- Two benchmark models:
 - Heavy Vector Triplets (HVT)
 - Georgi-Machacek (GM) Higgs Triplet Model : H⁺₅

Event selection

> Event Selection

- Pass single-electron triggers or single-muon triggers
- Exactly three leptons with $p_T > 25$ GeV and $|\eta| < 2.5$
- MET > 25 GeV
- ZZ veto: remove events with 4 or more muons or electrons with $p_T > 7$ GeV
- Select Opposite sign, Same Flavour pairs to built Z
- $| M_{||} 91.1875 GeV | < 20 GeV$
- If there are multiple choices, choose the pair that has the invariant mass closest to the Z mass
- W lepton: Likelihood Tight ID and Gradient isolation
- leading lepton $p_T > 27 \text{GeV}$ (in 2016 the trigger threshold was increased to 26 GeV)
- Longitudinal momentum of neutrinos reconstructed using W mass constrain


> VBS/VBF Category

- At least 2 jets with p_T >30 GeV and $|\eta| < 4.5$
- $m_{jj} > 500 \text{ GeV}$ and $\Delta \eta_{jj} > 3.5$ (using the two p_T -leading ones)

> qq Category

- Fail VBS/VBF cuts
- $p_T(Z)/Mass(WZ) > 0.35$
- $p_T(W)/Mass(WZ) > 0.35$

Event selection: signal $A \times \epsilon$

The signal selection acceptance times efficiency $(A \times \epsilon)$

- For qq category, the $A \times \epsilon$ increases from about 15% to 25%. The values decrease for resonance masses above approximately 2 TeV due to the collinearity of electrons from the $Z \rightarrow$ ee decays which spoils the isolation
- For VBS/VBF category, the $A \times \epsilon$ falls in the range 2–8% and 3–12% for HVT and H_5^+ respectively. The difference being due, with approximately equal importance, to the generator level selection and to the different angular distributions of the final products

600

500

ATLAS Simulation

700

800

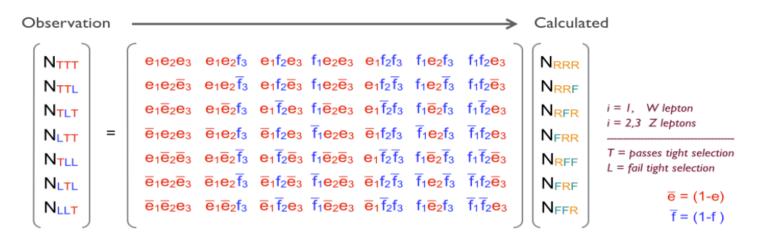
 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

pp→W'jj→WZjj→ℓvℓℓjj

m(W') [GeV]

900

~ 90% Real leptons : Estimated using MC


WZ (Sherpa)

- QCD WZ dominant background (~80% of the total)
- Uncertainties: 10% normalization, shapes used for PDF and Scale shape uncertainties, EWK corrections not available yet for our phase space
- ZZ (Powheg (qq) and Sherpa (gg)) : 10% theory uncertainty
- ttbarV (V=Z,W) (MadGraphPythia) 13% theory uncertainty for ttW and 12% ttZ
- tZ (MadGraphPythia) 15% theory uncertainty
- VVV (V=Z,W) (Sherpa) 20% theory uncertainty

~10 % Fake leptons : Estimated using Matrix Method

Background estimation Matrix Method

- Tight leptons match the WZ lepton selection.
- Loose leptons are defined by inverting some selection cuts i.e isolation, electron identification.
- We want to determine the background due to "fake" leptons.
 - S leptons ⇒ (# of Fake Real Real → Tight Tight Tight) + (# of Fake Real → Tight Tight Tight) + ...
- ▶ N_{TTT}, N_{TTL} ... are related to N_{RRR}, N_{RRF} by the fake matrix:

- e real efficiency : is the probability that a Real lepton is reconstructed as Tight.
- ▶ f fake probability : is the probability that a Fake lepton is reconstructed as Tight.
- ▶ By inverting the matrix, we calculate the fake contribution to our TTT signal

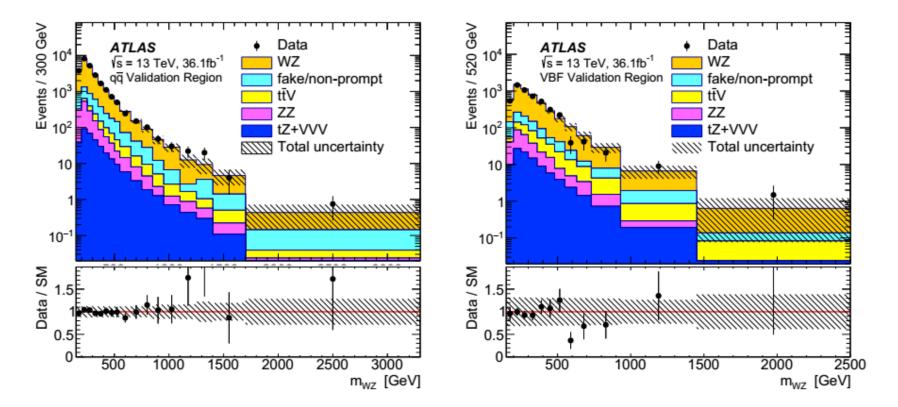
Background estimation Matrix Method

Fakes in our selection

 $N_{TTT} - e_1 e_2 e_3 N_{RRR} = [N_{TTL} - e_1 e_2 \overline{e}_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TLT} - e_1 \overline{e}_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{LTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_1 / \overline{f}_1 + [N_{TTT} - e_1 \overline{e}_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_1 / \overline{f}_1 + [N_{TTT} - e_1 \overline{e}_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_1 / \overline{f}_1 + [N_{TTT} - e_1 \overline{e}_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_2 / \overline{f}_2 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RRR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RR}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{e}_1 e_2 e_3 N_{RTT}] f_3 / \overline{f}_3 + [N_{TTT} - \overline{$

 $\frac{1}{1} N_{TLL} - e_1 \overline{e}_2 \overline{e}_3 N_{RRR} + \frac{1}{2} \overline{f}_3 + \frac{1}{2} \overline{f}_3 + \frac{1}{2} \overline{e}_1 \overline{e}_2 \overline{e}_3 N_{RRR} + \frac{1}{2} \overline{f}_1 \overline{f}_3 + \frac{1}{2} \overline{f}_1 \overline{e}_2 \overline{e}_3 N_{RRR} + \frac{1}{2} \overline{f}_1 \overline{f}_2 \overline{f}_1 \overline{f}_2$

- Background in the signal region
- real leptons ZZ, WZ ... from MC
- Loose Control regions
- Fake rates $F_i = f_i / \overline{f_i}$
- Ν_{TTT}, N_{TTL}, N_{TLT} ... measured by applying or inverting selection cuts
- e₁e₂e₃ N_{RR}, e₁e₂e₃ N_{RR} ... real lepton contamination from MC
- Fake Rates :
 - ▶ 2 different lepton selection for W and Z leptons → 2 fake rates f_1 and f_2 ($f_2 = f_3$)
 - Measured in dedicated control regions

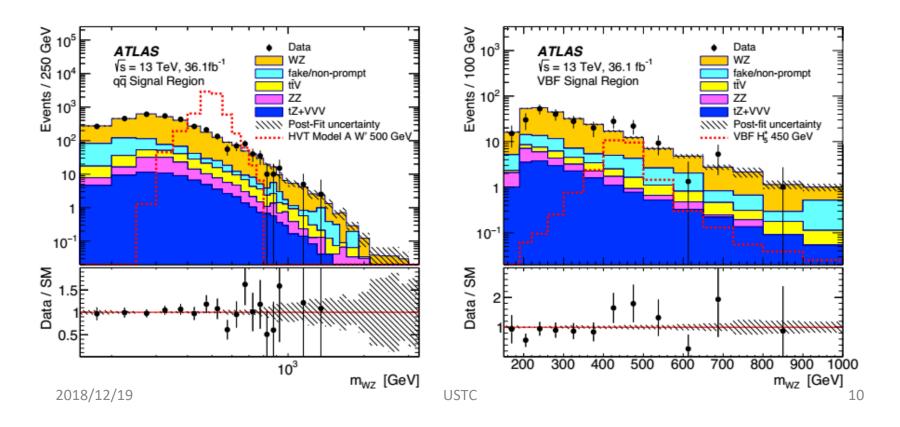

Background estimation validation

> qq Validation Region

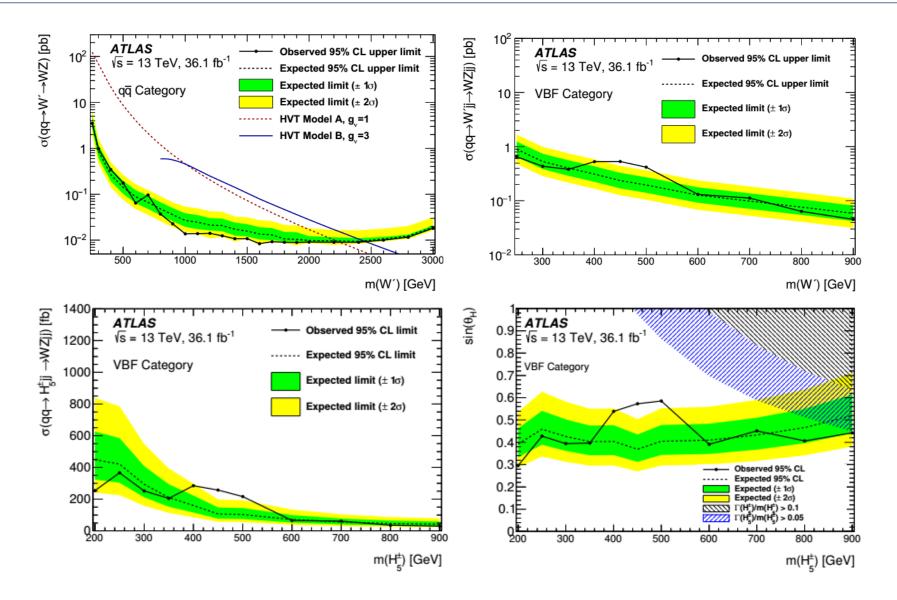
- Fail VBF/VBS selecion
- $p_T(Z)/Mass(WZ) < 0.35 \text{ or} p_T(W)/Mass(WZ) < 0.35$

> VBS/VBF Validation Region

- At least 2 jets with p_T >30 GeV and $|\eta| < 4.5$
- $-m_{jj} < 500 \; GeV \& \; m_{jj} > 100 \; GeV \& \Delta \eta_{jj} < 3.5$
- $p_T(Z)/Mass(WZ) < 0.35 \text{ or } p_T(W)/Mass(WZ) < 0.35$


Systematics uncertainties

Source	$\Delta \mu / \mu$ [%]	
	qq Category	VBF Category
	m(W') = 800 GeV	$m(H_5^{\pm}) = 450 \text{ GeV}$
WZ background modelling : Scale, PDF	5	11
WZ background modelling : Parton Shower	10	6
MC statistical uncertainty	7	8
Electron identification	4	2
Muon identification	3	3
Jet uncertainty	1	8
Missing transverse momentum	2	1
Fake/non-prompt	1	5
Total systematic uncertainty	17	21
Statistical uncertainty	53	52


Results

A binned likelihood function, constructed from the Poisson probability of the sum of the background and of hypothetical signal of strength µ, is used to set limits on the signal

	$q\bar{q}$ Signal Region	VBF Signal Region
WZ	521 ± 29	87 ± 12
Fake/non-prompt	64 ± 13	15 ± 4
$t\bar{t}V$	29 ± 4	4.9 ± 0.8
ZZ	18.9 ± 2.0	4.4 ± 1.0
tZ + VVV	14.1 ± 2.9	8.1 ± 1.8
Total Background	647 ± 25	120 ± 11
Observed	650	114

Results

Summary

- > A search is performed for resonant WZ production in fully leptonic final states (electrons and muons) using 36.1 fb⁻¹ of $\sqrt{s} = 13$ TeV pp data collected by the ATLAS experiment at the LHC during the 2015 and 2016 run periods.
 - qq category: Masses below 2260 GeV for HVT WZ Model A and 2460 GeV for model B, are excluded at 95% CL
 - VBS category: Limits on the production cross-section times branching ratio are obtained as a function of the mass of a charged member of a Heavy Vector Triplet or of the fiveplet scalar in the Georgi-Machacek model. The results show a local excess of events over the Standard Model expectations at a resonance mass of around 450 GeV. The local significances for signals of H⁺₅ and of a heavy vector W' boson are 2.9 and 3.1 standard deviations respectively. The respective global significances calculated considering the Look Elsewhere effect are 1.6 and 1.9 standard deviations respectively

> For the second round, A full run-II analysis is ongoing