

Development of the CMS Phase-1 Pixel Online Monitoring System and the Evolution of Pixel Leakage Current

Fengwangdong Zhang

On behalf of CMS Pixel Collaboration

The 4th China LHC Physics Workshop

CCNU, Wuhan

19.12.2018 - 22.12.2018

CMS Phase-1 pixel detector

Pixel detector

Online Monitoring Development

Motivation of Pixel Online Monitoring Development

🞽 CMS Pixel Online Monitoring Views 🔻 DAQ monitor Issues DB Data quality 🔻 Radiation damage 🔻 Masked channels CASTOR DCDCs Tools 🔻 PixDB 💌 Help 💌 Links 🛡

• A webpage for monitoring the following parameters online/offline:

•

...

- Environment variables:
 - Dew point
 - Air pressure
 - Air temperature
 - Humidity

•

. . .

- Detector variables:
 - Power supply voltage
 - Current in power supply group
 - Module temperatures
 - Cooling flow status

- CMS detector run property:
 - Instantaneous / integrated luminosity
 - Detector run status

•

. . .

- Data acquisition status
- Data quality monitoring

- Function of online monitoring system:
 - Correlate these information to have a good overview of the detector status
 - Centralize the above information
 - Have an easily accessible user interface

View of online quantity in the monitoring system

- During an LHC fill:
 - Instantaneous luminosity & leakage current (one power sector in layer 3 of Pixel Barrel)

• The monitoring system correlates the instantaneous luminosity and the leakage current at the same time

Pixel detector

Cooling schematics & temperature distribution

Pixel detector cooling loop schematics & flow

Pixel barrel cooling loop schematics & flow

- Each loop cools down the full barrel length over a given azimuthal (ϕ) range
- Arrows: direction of CO₂ flows

Average temperature accuracy:

± 0.5 degree celsius

Pixel barrel temperature (layer 2)

Temperature measured during p-p collisions is higher than the measured temperature in cosmic rays

Decreased CO₂ flow leads to a better heat exchange more sufficiently, resulting in more efficient cooling:
 lower temperature, less temperature spread

Assignment of power groups & leakage current distribution

Map of power sectors & leakage current (pixel barrel layer 2)

Correlation of leakage current & temperature

• We can improve the temperature estimates by use of a thermal mockup

Thermal Mockup

- Motivation:
 - Emulate the temperature distribution along pixel barrel layer 2
 - Estimate temperature spread in the real detector
 - Better model the correlation between pixel leakage current and temperature
- Setup: simulate the second layer of real pixel barrel detector
 - Same as a half shell of layer 2
 - Same cooling loop as the real detector
 - Same silicon sensors as the real detector
 - Every module has a heater instead of readout chip
 - Each module has a temperature probe precise measurement of temperature

Leakage current & temperature dependence (thermal mockup)

• We expect to have a spread of temperature of factor 2, which matches with the above plot

- Formula relating leakage current & temperature: leakage current factor = $\frac{I}{I_0} = \frac{1}{N_{\text{modules}}} \sum_i \frac{T_i^2}{T_0^2} \exp\left[-\frac{\Delta E}{2k_B}\left(\frac{1}{T_i} - \frac{1}{T_0}\right)\right]$
- Good agreement with the measured leakage currents in the real detector We understand the cooling in the detector 14

Pixel module leakage current evolution

Pixel barrel module leakage current evolution (measurement)

- Leakage current increased gradually due to accumulated radiation dose through the year
- Closer to beam spot -> more accumulated radiation dose -> higher leakage current (layer 1 > layer 2 > layer 3 > layer 4)
- Leakage current drop during MD/TS/YETS: annealing or changed high voltage settings

Pixel module leakage current simulation

- The expected leakage current in each pixel barrel layer is calculated based on the temperature and irradiation history
- Empirical radiation damage model is used by including the parameters: fluence, temperature, time, sensor volume
- Reference: DESY-THESIS-1999-040 (Hamburg model)

Pixel barrel leakage current simulation

L1: Leakage current per module

Simulation for z = 0 cm, scaled to silicon temperature and multiplied with factor to fit data: × 1.3

• Good agreement between measurement and simulation on module leakage current evolution

Conclusion

- We have developed an awesome monitoring system for CMS Phase-1 pixel detector
- · We have achieved a good understanding on the cooling of the pixel detector
- The study on the correlation between pixel leakage current and temperature has been successful
- We have realized a precise prediction on the module leakage current evolution

Thanks for your attention!

Backup

Introduction

- Pixel monitoring system
- Cooling schematics & Temperature
- Leakage current & correlation with temperature
- Prediction on pixel leakage current

- Pixel detector is the inner detector of silicon tracker
- Shortest distance: 2.9 cm to the beam pipe

• CMS :Integrated luminosity ~ 120 fb⁻¹ (2017 ~ 2018)

Pixel module occupancy

- Each module has 16 readout chips
- In the plot, one bin corresponds to one readout chip (ROC)
- The monitoring system has a database recording the problems associated to the detector occupancy
 - Red marked rectangles

Temperature & cooling flow dependence (thermal mockup)

- The effect observed is due to the properties of the CO₂ in 2-phase state
- The temperature at the return point ($\phi = 90^{\circ}$) stays nearly constant, the differences (spreads) depending the full heat load
- CO₂ mass flow reduction can decrease the temperature and leakage current in the detector
- A significant higher module power also affects the temperature

Silicon module temperature estimation

1. Measurements from carbon fibre (near cooling loop): Taking the average of all sensors and average over a day. Temperature is around -11.5 °C when low voltage is on.

2. Actual silicon temperature is higher than measurements near cooling loop when module power (low voltage) is on.
Estimation from mock-up layer 2 in laboratory:
+ 2-3 K offset to carbon fibre measurements.

	L1	L2	L3	L4	
1. Avg. carbon fibre temperature per day	fluctuating around -11.5 °C			5 °C	Z Layer 4:
2. Estimated offset	+3 K	+3 K	+3 K	+4 K	adjacent strip tracker, assuming +1 K
Silicon temperature	-8.5 °C	-8.5°C	-8.5°C	-7.5°C	

Layer 1: Better thermal contact (no base strips), but also higher digital activity. We estimate that these effects cancel each other out.

Pixel barrel temperature gradient along each cooling loop

- Each cooling loop has three temperature probes, which are located respectively at the beginning (inlet), middle, end (outlet) positions
- As expected for CO₂ cooling, the temperature at the outlet is lower than at the inlet

Pixel barrel temperature w.r.t azimuthal coordinate

 As a result of the 2-phase state of CO₂ cooling flow, decreased CO₂ flow leads to its absorbing heat more sufficiently, resulting in more efficient cooling, lower temperature, less temperature spread (explanations in slide 9)

Pixel barrel temperature gradient along each cooling loop

- Each cooling loop has three temperature probes, which are located respectively at the beginning (inlet), middle, end (outlet) positions
- As expected for CO₂ cooling, the temperature at the outlet is lower than at the inlet

Pixel barrel temperature w.r.t azimuthal coordinate

 As a result of the 2-phase state of CO₂ cooling flow, decreased CO₂ flow leads to its absorbing heat more sufficiently, resulting in more efficient cooling, lower temperature, less temperature spread (explanations in slide 9)

Map of pixel barrel power sectors

- Each layer has 8 power sectors
- Arrows indicate the inlet and outlet of CO₂ cooling lines

Pixel barrel leakage current distribution (average per sector)

Pixel barrel leakage current distribution (average per sector)

Pixel barrel leakage current w.r.t azimuthal coordinate

- Gray arrows: CO₂ cooling direction
- Dashed lines: inlet or outlet

- Outlet of cooling loop
 - Lower Temperature drop
 - Lower leakage current
- Inlet of cooling loop
 - Higher Temperature drop
 - Higher leakage current

Pixel endcap leakage current distribution

Pixel endcap module leakage current evolution (measurement)

- Leakage current increased gradually due to accumulated radiation dose through the year
- Closer to beam spot -> more accumulated radiation dose -> higher leakage current (ring 1 > ring 2)
- Leakage current drop during MD/TS/YETS: annealing or changed high voltage settings

Pixel barrel module leakage current evolution

- LHC fills from beginning of 2017 until end of October in 2018 data-taking are employed (proton-proton collisions)
- Currents measured within 20 minutes from Stable Beam declaration
- Average current per pixel module measured from power groups (no temperature correction)
- Leakage current increased gradually due to accumulated radiation dose through the year
- Closer to beam spot -> more accumulated radiation dose -> higher leakage current (layer 1 > layer 2 > layer 3 > layer 4)
- There are some drops of leakage current from the global trend because of:
 - Annealing during Machine development or technical stop period
 - Power supply replacement
 - HV setting change

Pixel endcap module leakage current evolution

- LHC fills from beginning of 2017 until end of October in 2018 data-taking are employed (proton-proton collisions)
- Currents measured within 20 minutes from Stable Beam declaration
- Average current per pixel module measured from power groups (no temperature correction)
- Note: The 4th power group giving much higher current in disk 1 (seen in slide 25) is removed from the average
- Leakage current increased gradually due to accumulated radiation dose through the year
- Closer to beam spot -> more accumulated radiation dose -> higher leakage current (ring 1 > ring 2)
- There are some drops of leakage current from the global trend because of:
 - Annealing during Machine development or technical stop period
 - Power supply replacement
 - HV setting change

Pixel barrel leakage current simulation

• Good agreement between measurement and simulation on module leakage current evolution