

ALICE ITS Upgrade

Biao Zhang (For the ALICE Collaboration)

Central China Normal University

Outline

- Motivation
- ALICE ITS upgrade
 - ✓ Pixel Chip
 - ✓ Production
 - ✓ CCNU effort
- Summary and outlook

- The LHC heavy-ion program will extend to Run 3 and Run 4
 - ➡ phase I: ALICE and LHCb (2019~2020)
 - ➡ phase II: CMS and ATLAS (2024~2026)
- Goal of ALICE upgrade
 - readout of Pb-Pb interactions > 50 kHz
 - Integrated luminosity > 10 nb⁻¹

Current ALICE Detector

 $r_{in} = 3.9 \text{ cm} r_{out} = 43 \text{ cm}$ 6 silicon detector layers: 2 hybrid pixel (SPD), 2 silicon drift (**SDD**), 2 silicon strip (SSD)

SPD thickness (X/X_0) : 1.14% per layer Readout rate: ~1kHz (ITS, TPC)

ALICE consists of

- central barrel,
- forward muon spectrometer,
- several dedicated detectors for triggering and event characterization.

- Max readout Pb-Pb interactions rate ~ 500 Hz
- integrated luminosity ~ 0.1 nb⁻¹ 😕
- Present limits:
 - charm difficult for $p_t \rightarrow 0$ (background is too large)
 - resolution not sufficient for charmed baryons ($\Lambda_c c\tau$ = 60 µm)
 - Λ_b impossible in Pb-Pb collisions (insufficient statistics and resolution)
 - indirect B measurement via electrons;
 -

Requirements:

Increase vertex resolution and tracking efficiency Increase readout rate capabilities

New Inner Tracking System

- 1. Improve impact parameter resolution by a factor of ~3
- Get closer to IP (position of first layer): 39mm ⇒22mm
- Reduce material budget: X/X₀ /layer: ~1.14% ⇒~ 0.3%
- Reduce pixel size
 - currently 50mm x 425mm
 monolithic pixels ➡ 27µm x 29µm
- 2. Improve tracking efficiency and $p_{\rm T}$ resolution at low $p_{\rm T}$
- Increase granularity: 6 layers **→** 7 layers

3. Fast readout

 readout of Pb-Pb interactions at > 100 kHz and pp interactions at ~ 400 kHz (currently limited at 1kHz with full ITS and ~3kHz without silicon drit)

4. Fast insertion/removal for yearly maintenancepossibility to replace non functioning detector modules during yearly shutdown

New ITS Performance

ALIPIDE pixel chip

ALPIDE (ALICE Plxel DEtector) (IB: 50 μm thick; OB: 100 μm thick)

- ✓ 130,000 pixel/cm²
- ✓ Spatial resolution: ~5 µm (3-D)
- ✓ Integration time: < 10 µs</p>
- ✓ Max particle rate: 100 MHz/cm³
- ✓ Fake-hit rate: ~10⁻¹⁰ pixel/event
- ✓ Power: ~ 300 nW/pixel

Chip Performance

- Detection efficiency stays at 100% over wide range of threshold value
- Fake-hit rate is below 10⁻¹¹ /pixel/event (requirement 10⁻⁶)
- Average cluster sizes vary between 1 and 3 pixels (for MIPs)
- Resolution of ~5µm at a threshold of 200 electrons
- Irradiated chips (NIEL/TID) show no degradation in resolution/efficiency

Biao Zhang @4th CLHC 2018

New ITS Layout

Construction -Inner Barrel

HIC: Hybrid Integrated Circuit

Flexible PCB (FPC) Module Assembly **LPIDE** Sensor Stave Assembly 300 Chip 0 Chip 1 Chip 3 Chip 4 Chip 5 Chip 6 Chip 7 Chip 8 Chip 2 Testing 200 Noise map of a IB Stave with an average noise of about 5 e

(IB: 9 chips + FPC; OB: 14 chips + FPC) ALICIA:

- Required production quantity
- 120 HICs (48 staves per Inner Barrel, 2 Inner Barrels, plus spares)
- Sensor alignment in a custom designed Module Assembly Machine (ALICIA):
- 5 μm precision chip placement
- 6 machines were installed at HIC construction sites (IB: CERN; OB: Bari, Liverpool, Pusan, Strasbourg, Wuhan)

HIC/Stave testing

- using dedicated test setup
- classification scheme according to the results of various functional tests

Construction -Out Barrel

CCNU Effort

E

Biao、Jun、Daming、Kai、Peipei、Wenjing

Chip-RPC interconnectio

CCNU Effort

- Efforts on ALPIDE chip design since 2012
- Take charge of 20% ALICE/ITS OB HIC module assembly & test (~7500 ALPIDE chips)
- Pre-series production started in Dec. 2017
- Series production started in April, 2018, and scheduled to be completed in May, 2019
- As so far, around one half HIC modules have been constructed and tested
- Long-term plan: (1) ALICE ITS calibration and alignment; (2) open-bottom production at LHC Biao Zhang @4th CLHC 2018 15

- ALICE Inner Tracking System will be upgraded in LS2(2019~2020)
 - ✓ Improve vertex and tracking performance
 - ✓ Enable Pb-Pb collision readout rate at 50 kHZ
- The ALPIDE pixel chip show good performance
 - \checkmark Low fake-hit rate and integration time
 - ✓ High pixel integration density
- CCNU involves ALICE ITS upgrade
 - ✓ Chip design
 - ✓ Detector construction
 - \checkmark Commissioning and heavy flavor physics in the future

BACK UP

Production

