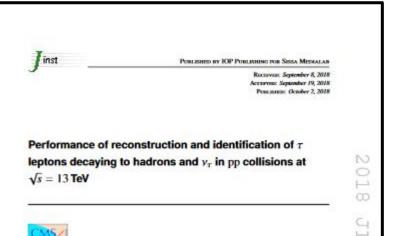


中國科學院為能物記納完備 Institute of High Energy Physics Chinese Academy of Sciences

Reconstruction and identification of hadronic tau at 13 TeV

Aniello Spiezia, Taozhe YU

CLHCP 2018.12.20-22, WuHan



Introduction

"Performance of reconstruction and identification of т leptons decaying to hadrons and vт in pp collisions at √s=13 TeV"

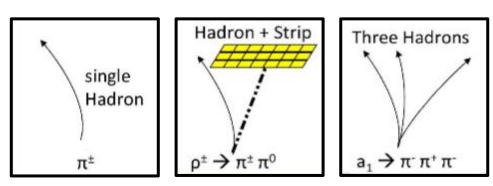
- Paper published in September 2018: JINST 13 (2018) no. 10, P10005
- arXiv:1809.02816 (link here)
- Algorithm developed by the CMS Collaboration to reconstruct and identify hadronically decaying τ leptons produced in pp collisions

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

Austrastr: The algorithm developed by the CMS Collaboration to reconstruct and identify τ leptons produced in proton-proton collisions at $\sqrt{s} = 7$ and 8 TeV, via their decays to hadrons and a neutrino, has been significantly improved. The changes include a revised reconstruction of π^0 candidates, and improvements in multivariate discriminants to separate τ leptons from jets and electrons. The algorithm is extended to reconstruct τ leptons in highly Lorentz-boosted pair production, and in the high-level trigger. The performance of the algorithm is studied using protonproton collisions recorded during 2016 at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 35.9 fb⁻¹. The performance is evaluated in terms of the efficiency for a genuine τ lepton to pass the identification criteria and of the probabilities for jets, electrons, and muons to be misidentified as τ leptons. The results are found to be very close to those expected from Monte Carlo simulation.

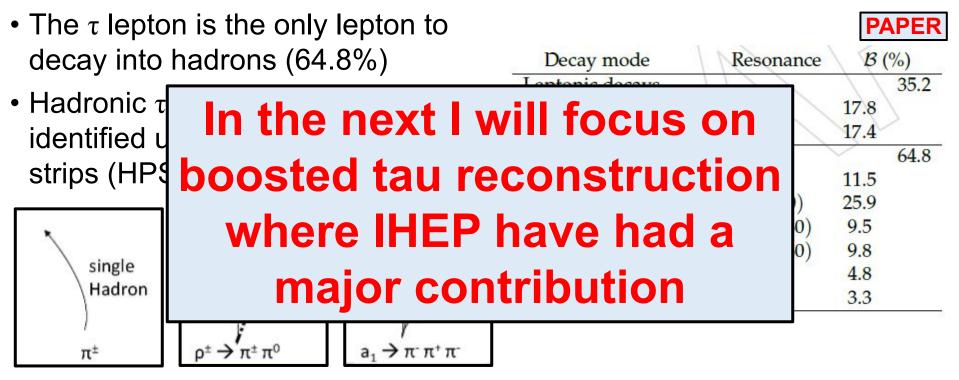
Kerwoors: Large detector-systems performance; Particle identification methods; Performance of High Energy Physics Detectors


https://doi.org/10.1088/1748-0221/13/10/P10005

Introduction

- The τ lepton is the only lepton to decay into hadrons (64.8%)
- In CMS hadronic τ are reconstructed and identified using the hadrons-plusstrips (HPS) algorithm

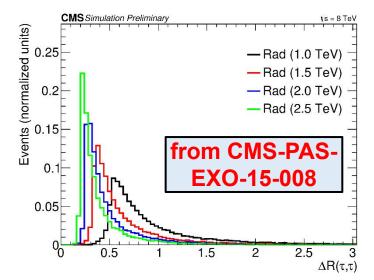
Decay mode	Resonance	B	(%)
Leptonic decays		//	35.2
$\tau^- \rightarrow e^- \overline{\nu}_e \nu_{\tau}$	1 > 1	17.8	
$\tau^- ightarrow \mu^- \overline{\nu}_\mu \nu_\tau$	KA	17.4	
Hadronic decays	15		64.8
$\tau^- \rightarrow h^- \nu_{\tau}$		11.5	
$\tau^- ightarrow h^- \pi^0 u_{ au}$	$\rho(770)$	25.9	
$\tau^- \rightarrow h^- \pi^0 \pi^0 \nu_{\tau}$	$a_1(1260)$	9.5	
$\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$	$a_1(1260)$	9.8	
$\tau^- \rightarrow h^- h^+ h^- \pi^0 \nu_{\tau}$		4.8	
Others		3.3	


New features introduced in Run II:

- **1. Dynamic-strip reconstruction** \rightarrow change the size of the strip in a dynamic way to reconstruct the decay products from the π^0 more effectively
- 2. Improvements in the MVA discriminants to reduce fakes from jets/electrons
- 3. HPS extended to reconstruct τ pairs from boosted resonances
- 4. Dedicated τ_h identification defined at high-level triggers

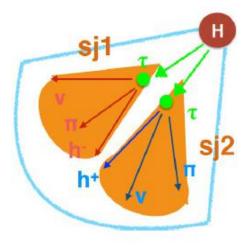
Introduction

New features introduced in Run II:


- **1. Dynamic-strip reconstruction** \rightarrow change the size of the strip in a dynamic way to reconstruct the decay products from the π^0 more effectively
- 2. Improvements in the MVA discriminants to reduce fakes from jets/electrons
- 3. HPS extended to reconstruct τ pairs from boosted resonances
- 4. Dedicated τ_h identification defined at high-level triggers

Highly-boosted τ pairs

Heavy resonances with $M \ge 1$ TeV ends with tau pairs produced close to each other \rightarrow if $\Delta R(\tau,\tau) < 0.4$, a new approach is needed

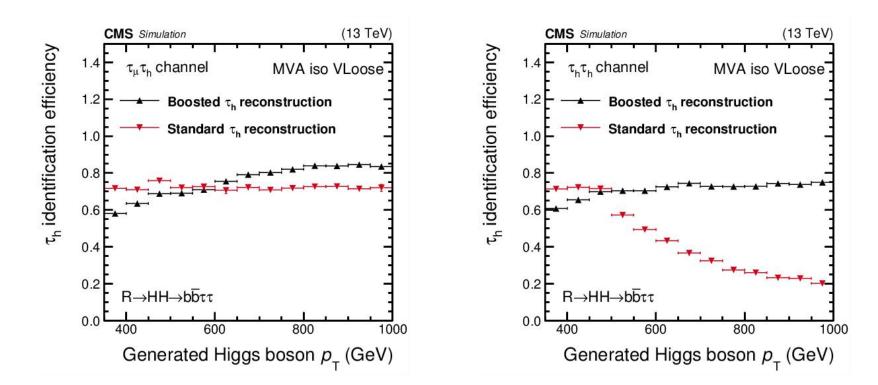

- Massive boson with large pt, for example a radion decaying to HH and with at least one H decaying to a pair of τ leptons → the jets from the two τ are emitted very close to each other
- The performance of the standard HPS algorithm in such topologies is poor, as it was designed to reconstruct only one single τ lepton
- A dedicated version of the HPS algorithm is developed to reconstruct the two τ with large momenta emitted very close to each other
- This algorithm takes advantage of jet substructure techniques

Highly-boosted τ pairs

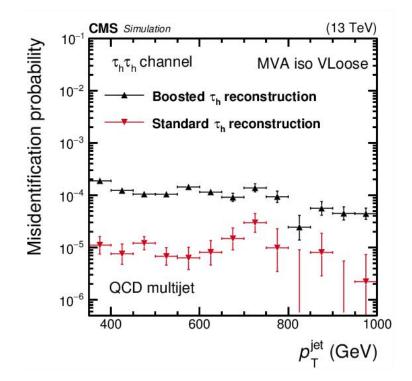
Algorithm workflow:

- Starting from large radius jet with pt > 100 GeV
- Look for two subjets inside it \rightarrow they are expected to be the two τ from the boosted H
- the pt of each subjet must be > 10GeV
- mass of the heaviest subjet less than 2/3 of the fat jet mass
- if no subjets pair is found, the procedure is repeated treating the subjet with highest mass as initial jet and splitting it into two new subjets

Subjets are fed to the hadrons-plus-strips algorithm as tau candidates

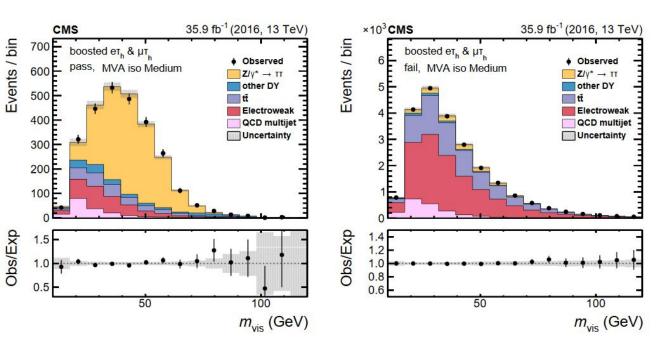


Tau identification efficiency



- Comparison of the **efficiencies** between **standard reconstruction versus boosted reconstruction** in simulated events of radion \rightarrow HH \rightarrow bb $\tau\tau$ in the $\tau_{\mu}\tau_{h}$ (left) and $\tau_{h}\tau_{h}$ (right) final state
- The algorithm used for highly boosted events provides a considerably higher efficiency than the standard HPS algorithm for τ lepton pairs with pt greater than ≈ 0.5 TeV

Misidentification probability



• Expected probability for large-radius jets to be misidentified as hadronic τ pairs is shown for simulated QCD multijet event

- Performances measured in **boosted Z** $\rightarrow \tau \tau$ events, with one τ decaying hadronically and the other to muon/electron
- The $\Delta R(lep,\tau)$ is considered between 0.4 and 0.8
- Maximum-likelihood fit of visible mass performed in three regions
- Scale factors compatible with the ones obtained for standard $\boldsymbol{\tau}$

Working point	Scale factor	
Very loose	0.97±0.09	
Loose	0.99 ± 0.09	
Medium	0.98 ± 0.09	
Tight	0.96 ± 0.08	
Very tight	0.95 ± 0.09	
Very-very tight	0.90 ± 0.08	

- The paper describes the performance of reconstruction and identification of τ_h at 13 TeV
- Several improvements and new features with respect to the Run-1 algorithm (link <u>here</u>) have been obtained
- Between them, reconstruction of τ_h pairs coming from boosted resonances (Z/H bosons)
- The algorithm has been shown to be a powerful tool to reconstruct τ_h leptons in CMS