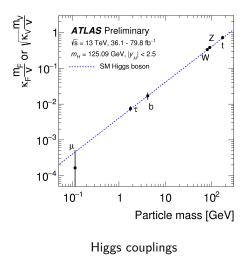
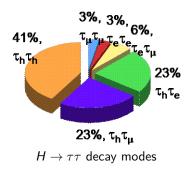


Cross section measurement of the Higgs boson decaying in tau-lepton pair with the ATLAS detector

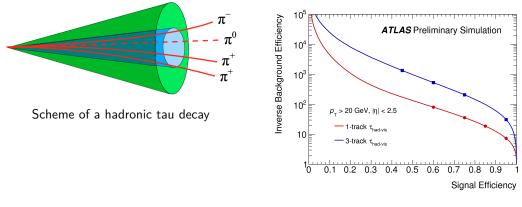
Antonio De Maria on the behalf of the ATLAS collaboration


CLHCP Conference


21/12/2018

$H \rightarrow \tau \tau$ search motivation

• In the SM, $H \rightarrow \tau \tau$ is currently the only accessible decay at the LHC to establish Higgs-Yukawa coupling to leptons

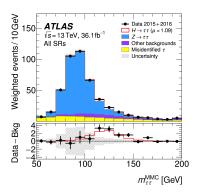


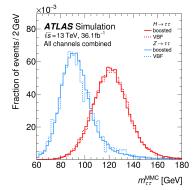
- Daass Mada	DD [0/1
au Decay Mode	BR [%]
$\tau^- ightarrow e^- \bar{\nu}_e \nu_{\tau}$	17.8
$\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$	17.4
$\tau^- \rightarrow h^- \nu_{\tau}$	11.5
$ au^- ightarrow h^- \pi^0 u_ au$	26.0
$ au^- ightarrow h^- \pi^0 \pi^0 u_ au$	9.5
$ au^- ightarrow h^- h^+ h^- u_ au$	9.8
$ au^- ightarrow h^- h^+ h^- \pi^0 u_ au$	4.8
Others	3.2

Tau Reconstruction and Identification

- Tau candidates are seeded by anti- k_t jets with a distance parameter R = 0.4
- Track association to select tracks in the *core* ($0 < \Delta R < 0.2$) and *isolation* ($0.2 < \Delta R < 0.4$) regions around the tau candidate
- Identification algorithm based on Boosted Decision Tree (BDT) to reject background from q/g jets
 - use information from shower shape and track based variables

Eur.Phys.JC76(5),1-26(2016)

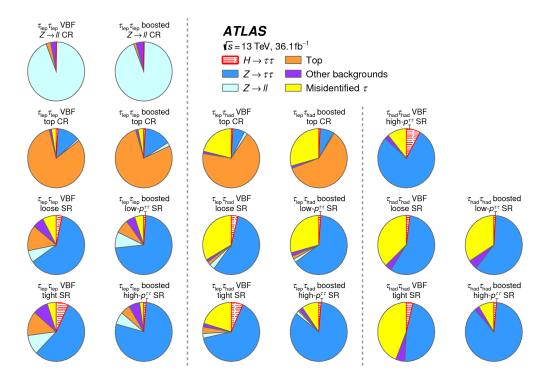



- Cut-based (CBA) analysis using 36.1 fb⁻¹ of data collected at √s = 13 TeV during 2015+2016 (https://arxiv.org/abs/1811.08856)
- Targeting Vector Boson Fusion (VBF) and Gluon Fusion (ggF) Higgs boson production modes
- Harmonisation across different di-tau decay channels to use similar signal regions and similar object definitions

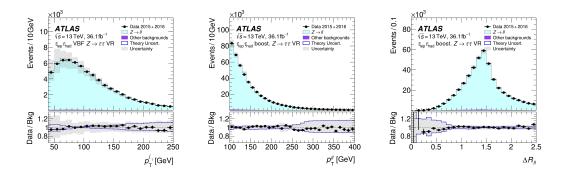
Sig	nal Region	Inclusive	τ_{lep}	$\tau_{\rm lep} \tau_{\rm had}$	$ au_{ m had} au_{ m had}$	
	$\text{High-}p_{\mathrm{T}}^{\tau\tau}$	$\begin{array}{l} p_{\mathrm{T}}^{j_2} > 30 \mathrm{GeV} \\ \Delta \eta_{ij} > 3 \end{array}$			$\begin{array}{c} p_{\mathrm{T}}^{\tau\tau} > 140 \mathrm{GeV} \\ \Delta R_{\tau\tau} < 1.5 \end{array}$	
VBF	Tight	$\begin{array}{c} m_{jj} > 400 \text{GeV} \\ \eta_{j1} \cdot \eta_{j2} < 0 \\ \text{Central leptons} \end{array}$	$m_{jj} > 800 \mathrm{GeV}$	$\begin{array}{l} m_{jj} > 500 \mathrm{GeV} \\ p_{\mathrm{T}}^{\tau\tau} > 100 \mathrm{GeV} \end{array}$	Not VBF high- $p_{\rm T}$ $m_{jj} > (1550 - 250 \cdot \Delta \eta_{jj}) {\rm GeV}$	
	Loose	Central leptons	Otherwise			
Boosted	$\text{High-}p_{\mathrm{T}}^{\tau\tau}$	Not VBF $p_{\rm T}^{\tau\tau} > 100 {\rm GeV}$	$p_{\rm T}^{\tau\tau} > 140 {\rm GeV} \\ \Delta R_{\tau\tau} < 1.5$			
Boc	$\text{Low-}p_{\text{T}}^{\tau\tau}$	$p_{\rm T} > 100 {\rm GeV}$	Otherwise			

- Combined fit on the di-tau mass based on Maximum Likelihood Estimation to determine the cross section
 - di-tau mass estimated using the Missing Mass Calculator

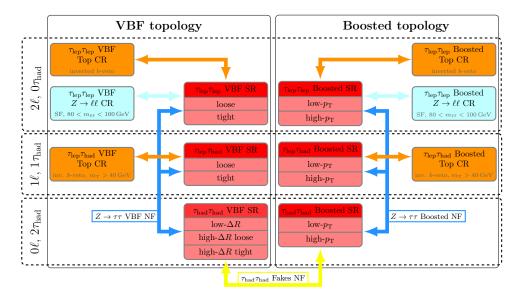
- Reconstruction of the mass of a resonance decaying into a pair of tau leptons is difficult because of the neutrinos in final state
- Missing Mass Calculator ^(*) :
 - the orientations of the neutrinos and other decay products must be consistent with the mass and decay kinematics
 - result is achieved by minimising a likelihood in the allowed phase space region
- Successfully used in Run1, re-tuned in Run2 due to ATLAS detector upgrades
- Good separation power between Z
 ightarrow au au (main irreducible background) and Signal



(*) https://arxiv.org/pdf/1012.4686.pdf A. De Maria

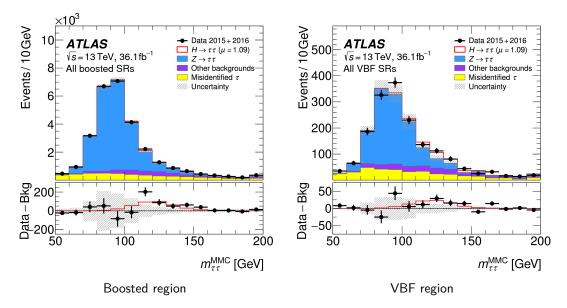

Signal/Control regions composition

$Z \rightarrow \tau \tau$ MC validation



- Validate the MC simulation of the main kinematic variables used to define Boosted and VBF region
- Using $Z \rightarrow II$ events as proxy of $Z \rightarrow \tau \tau$ due to high purity selection

Fit Model



- 13 signal regions + 6 control regions to constrain $Z \rightarrow II$ and $t\bar{t}$ normalisation
- $Z \rightarrow \tau \tau$ free floating in fit and correlated across the different
- Fake background estimated through data-driven techniques

MMC Postfit distributions

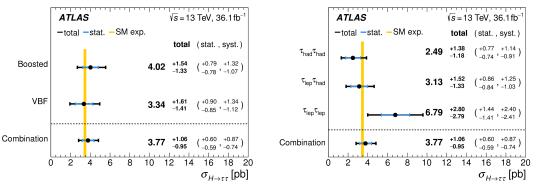
- Sum over the respective channel signal regions
- Clear evidence of signal on top of the Z
 ightarrow au au mass tail distribution

• Run 1 ^(*) (BDT) + Run 2 (CBA) combination results (in σ unit):

	Run 1	Run 2	Combination
Observed	4.5	4.3	6.4
Expected	3.4	4.1	5.4

- Nuisance parameters uncorrelated between the two LHC runs
- Different $Z \rightarrow \tau \tau$ background estimation between the two runs:
 - data driven estimation in Run 1 (embedding technique)
 - MC based estimation in Run 2

• Combination with Run 1 beyond 5 σ threshold:

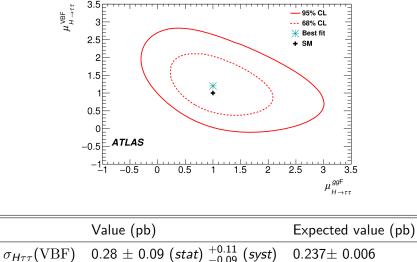

Observation of the $H \rightarrow \tau \tau$ decay with the ATLAS experiment

(*) JHEP04(2015)117

• Total cross section times branching ratio in agreement with SM expectation:

	Value (pb)	Expected value (pb)
$\sigma_{H au au}$	$3.77 \ ^{+0.60}_{-0.59}$ (stat) $\ ^{+0.87}_{-0.74}$ (syst)	3.46 ± 0.13

Results per category


Results per final state

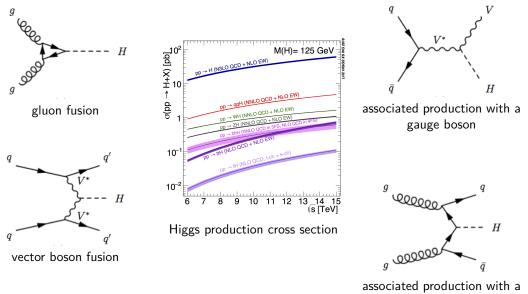
- Similar performance in *Boosted* and *VBF* regions
- Sensitivity driven by $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$ final states

VBF vs ggF cross section

- 2 POI fit with free floating ggF and VBF normalisations
 - other production modes fixed to SM predictions
- Results in agreement with SM expectations

Source of uncertainty	Impact $\Delta \sigma / \sigma_{H \to \tau \tau}$ [%]	
	Observed	Expected
Theoretical uncert. in signal	+13.4 / -8.7	+12.0 / -7.8
Background statistics	+10.8/ -9.9	+10.1 / -9.7
Jets and $E_{\rm T}^{\rm miss}$	+11.2 / -9.1	+10.4 / -8.4
Background normalization	+6.3/-4.4	+6.3/-4.4
Misidentified τ	+4.5/ -4.2	+3.4/ -3.2
Theoretical uncert. in background	+4.6 / -3.6	+5.0/-4.0
Hadronic τ decays	+4.4 / -2.9	+5.5 / -4.0
Flavor tagging	+3.4/ -3.4	+3.0/ -2.3
Luminosity	+3.3/ -2.4	+3.1/ -2.2
Electrons and muons	+1.2 / -0.9	+1.1 / -0.8
Total systematic uncert.	+23 / -20	+22 / -19
Data statistics	± 16	± 15
Total	+28 / -25	+27 / -24

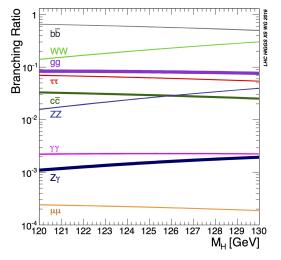
- Systematic uncertainty greater than statistical uncertainty
- Largest impact from Theory uncertainties on the signal and Jets/E_T^{miss} related systematics
- MC statistical uncertainty has also sizable impact


- $H \rightarrow \tau \tau$ measurement has been performed using 2015+2016 dataset (36.1 fb⁻¹)
- $H \rightarrow \tau \tau$ observed combining Run 1 and Run 2 analyses with an observed (expected) significance of 6.4 (5.4) σ
- Measured cross sections times branching ration for VBF and ggF production modes are in agreement with SM expectations

Thanks For Your Attention

Backup

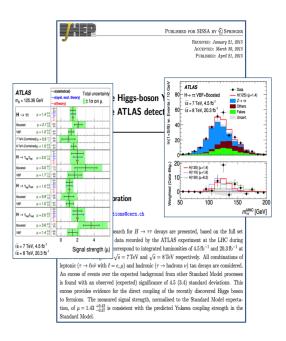
Higgs boson production modes



 $t\bar{t}$ pair

• Largest cross section for gluon fusion (*ggF*) and vector boson fusion (*VBF*) production modes

Higgs boson decay branching ratios


Higgs decay branching ratios

- Largest branching ratio (BR) for $H \rightarrow b\bar{b}$ and $H \rightarrow WW^*$, however poor mass resolution and large background contamination
- $H \rightarrow \tau \tau$ decay in only 6 % of the cases; mass resolution dominated by E_T^{miss} resolution
- $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$ have low BR, but really good mass resolution and no neutrinos in the final state

Run 1 coupling measurement results

- Split in VBF and Boosted categories to enrich VBF and ggF topologies, respectively
- Analysis used both BDT and cut-based approach
- Focus on BDT result due to better performance
 - Observed (Expected) significance: 4.5 (3.4) σ

Process	Monte Carlo generator	PDF	UEPS	Cross-section order
ggF VBF VH $t\bar{t}H$	Powheg-Box v2	PDF4LHC15 NNLO	Рутніа 8.212	$N^{3}LO QCD + NLO EW$
	Powheg-Box v2	PDF4LHC15 NLO	Рутніа 8.212	~NNLO QCD + NLO EW
	Powheg-Box v2	PDF4LHC15 NLO	Рутніа 8.212	NNLO QCD + NLO EW
	MG5_aMC@NLO v2.2.2	NNPDF30LO	Рутніа 8.212	NLO QCD + NLO EW
$ \begin{array}{c} W/Z + \text{jets} \\ VV/V\gamma^* \\ t\overline{t} \\ Wt \end{array} $	Sherpa 2.2.1	NNPDF30NNLO	Sherpa 2.2.1	NNLO
	Sherpa 2.2.1	NNPDF30NNLO	Sherpa 2.2.1	NLO
	Powheg-Box v2	CT10	Pythia 6.428	NNLO+NNLL
	Powheg-Box v1	CT10F4	Pythia 6.428	NLO

• Contribution from light lepton/jet mis-identified as τ is estimated thorugh data-driven technicques

 Parametrised probability density function constructed using binned template histograms

$$\mathcal{P}(n_c, x_e, a_p \mid \phi_p, \alpha_p, \gamma_b) = \prod_{c \in \text{channels}} \left[\text{Pois}(n_c \mid \nu_c) \prod_{e=1}^{n_c} f_c(x_e \mid \alpha) \right] \cdot G(L_0 \mid \lambda, \Delta_L) \cdot \prod_{p \in \mathbb{S} + \Gamma} f_p(a_p \mid \alpha_p)$$

$$\text{Poisson probability}$$
of obtaining n events when $\mu \text{S} + \text{B}$ are expected expec

• The full likelihood is simply a *joint likelihood of a physics measurement and a calibration measurement* where both terms are treated on equal footing

P-value and significance

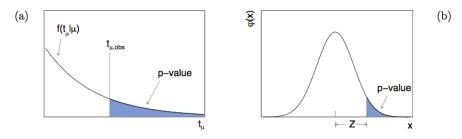


Figure 1: (a) Illustration of the relation between the *p*-value obtained from an observed value of the test statistic t_{μ} . (b) The standard normal distribution $\varphi(x) = (1/\sqrt{2\pi}) \exp(-x^2/2)$ showing the relation between the significance Z and the *p*-value.

- *p-value* : probability, under the assumption of H, of finding data of equal or greater incompatibility with the predictions of H
 - exclude null hypothesis if its p-value is observed below a specified threshold
- conversion p-value/ σ : $\sigma = \Phi^{-1}(1-p)$, where Φ^{-1} is the quantile of the standard Gaussian
- p-value = 2.87 $\times 10^{-7} \simeq 5 \sigma \rightarrow$ particle discovery/process observation