

LHCb Detector Upgrade

曾 鸣 (清华大学) 代表 LHCb中国组

第四届中国LHC物理工作会议 ^{华中师范大学 2018.12.22}

LHCb 主要科学目标与探测器

- ・ 理解正反物质不对称: CP破坏
- ・ 间接发现新物理:稀有衰变
- 理解强相互作用机制:强子性质,新强子态
- 其它: 电弱物理, 重离子物理, ...

LHCb Run 2

LHCb proved itself to be the Forward **General–Purpose Detector at the LHC**

4

6

- ➢ 运行亮度达到4 × 10³² cm⁻²s⁻¹, 两倍于设计指标
- ➤ 积分亮度超过9fb⁻¹

LHCb Upgrade Motivation

LHCb Upgrade I, with installing in 2019-2020 (LHC LS2) and first

data-taking in Run 3 (2021-2023).

- \clubsuit Goal: increase statistics by more than imes10
- * Raise operational luminosity by factor of five to 2×10^{33} cm⁻²s⁻¹
- Triggerless 40MHz readout (Full software trigger)
- Necessitates redesign of several sub-detectors and overhaul of readout (40MHz readout rate)
- Replace tracking detectors (finer granularity to cope with

higher particle density)

Present L0 hardware trigger (max rate 1 MHz) saturates at high luminosity for hadronic final state modes

LHCb Upgrade I

All sub-detectors read out at 40 MHz for a fully software trigger.

LHCb Upgrade I: Tracking - VELO

Current VELO: 21 layers of silicon micro-strips \rightarrow 170 k readout channels Inside LHC vacuum chamber \rightarrow active area at 8.2 mm from beam \rightarrow separated from beam only by a 300 µm thin aluminium foil

VELO Upgrade: 26 layers of silicon pixel detectors \rightarrow 41 million readout channels Even closer to beam \rightarrow active area 8.2 \rightarrow 5.1 mm Even less material \rightarrow thinner sensors (300 \rightarrow 200 µm) \rightarrow thinner aluminum foil (300 \rightarrow 250 µm)

LHCb Upgrade I: Tracking - UT

Current: TT 4 layers of silicon micro-strips \rightarrow 183 µm pitch \rightarrow 40, 30, 20, 10 cm in length \rightarrow 143 k readout channels

Upgrade: UT 4 layers of silicon micro-strips, but finer granularity → 190 and 95 µm pitch → 10 and 5 cm in length → 537 k readout channels and better radiation hardness New readout chip, compatible with 40 MHz readout scheme

LHCb Upgrade I: Tracking - SciFi

Current: IT & OT3 stations with 4 layers each \rightarrow silicon micro-strips in innermost region \rightarrow straw drift tubes in outer region \rightarrow 130 k + 54 k readout channels

LHCb Upgrade I: Tracking - SciFi

Current: IT & OT3 stations with 4 layers each \rightarrow silicon micro-strips in innermost region \rightarrow straw drift tubes in outer region \rightarrow 130 k + 54 k readout channels

Upgrade: SciFi 3 stations of scintillating fibres \rightarrow 2.5 m long, 250 µm diameter \rightarrow read out with silicon photomultipliers \rightarrow 590 k readout channels

2018/12/22

LHCb Upgrade I: PID Detector – RICH, Muon, Calorimeters

RICH:

- New photo-detectors and readout chain.
- 6x6 and 2.9x2.9 mm2 pixels multi-anode photomultipliers (MaPMTs).
- Modified optics and mechanics to reduce RICH1 occupancy.

Calorimeters:

- Electromagnetic (ECAL) and hadronic (HCAL) calorimeters remain identical
- New readout electronics.
- ECAL inner modules replaced in LS3.

Muon Stations:

• New readout electronics and increased granularity.

RICH module equipped with MaPMTs

11

LHCb Upgrade I: Trigger

LHC Run II (2015)

Upgrade

LHCb Upgrade II

LHCb Upgrade II, with installing in 2030 (LHC LS4).

✤ Raise operational luminosity by another factor of ten to 1.5-2×10³⁴ cm⁻²s⁻¹

- Detectors with even finer granularity and with excellent timing resolution (4D resolution)
- Radiation hardness !

LHCb Upgrade II

Examples of detector developments VELO: silicon pixels with timing resolution \rightarrow LGAD (Limited Gain Avalanche Detectors) Tracking: central region with silicon \rightarrow HV-MAPS (Monolithic Pixels) Muon detectors: finer granularity $\rightarrow \mu$ -RWELL

LHCb Upgrade I: SciFi

LHCb Upgrade I: SciFi

Goal: increase statistics by more than ×10
 ✓ Operate at 2×10³³cm⁻²s⁻¹ → 50 fb⁻¹
 ✓ Triggerless 40MHz readout

Scintillating Fibre (Sci-Fi) Tracker
 ✓ Fast, high efficiency (~99%)
 ✓ High granularity (250µm)
 ✓ High resolution (<100µm)
 ✓ Low mass (<1% X₀/layer)
 ✓ Radiation hardness (up to 35kGy)

Schematic view of the current LHCb detector

SciFi – Fibre Mat & Module

- 250µm diameter scintillating fibre wound into a 6-layer 2.4m-long fibre mat
 - \checkmark one end equipped with a mirror
 - ✓ read out by $4 \times \text{SiPM}$ arrays
- 8 × fibre mat + honeycomb = sandwich-structure 0.5m × 5m module

Sci-Fi readout electronics (FE)

Tracker structure:

- ✓ 3 Tracking Stations
 - ✓ 12 detector layers (X-U-V-X, 5°)
 - ✓ 144 modules

✤Electronics design:

- ✓ ~340m² total active surface
- ✓ 590,000 SiPM channels
- ✓ 12,000 PACIFIC chips needed
- ✓ 2,500 Frontend Electronic Boards

✤LHCb China Group 2016~2018:

- ✓ Co-design Sci-Fi Frontend Electronic Boards
- ✓ Manufacturing all Frontend Boards in China, testing a part
- ✓ Sci-Fi Readout Electronics Quality Assurance System (For chips and boards)
- ✓ Readout Electronics for Detector Performance Evaluation (>20 setups in Sci-Fi group⁴)^{sn}

mirror

PACIFIC5

PACIFIC Carrier Board

We decided to re-optimize the routing of the PACIFIC Carrier Board

- → $4 \times \text{PACIFIC ASICs}$ (196-pin BGA packaged)
- ✓ 4 × temperature measurement circuits (voltage divider circuits with NTC, 2 for SiPMs, 2 for the ASICs)
- > 4 \times SiPM bias voltage measurement circuits (voltage divider circuits)
- 1 × BoardID IC (DS2401 64-bit unique, factory-lasered silicon serial number, no permanent damage up to 140Gy)

http://radwg.web.cern.ch/RadWG/Pages/showExternal.aspx?GotoUrl=https://twiki.cern.ch/twiki/bin/viewauth/Main/Tullios
<u>PreferredPartList</u>

- $4 \times \text{SiPM}$ flex cable connectors (Hirose DF12(3.0)-80DS-0.5V)
- > $1 \times FMC$ connector (ASP-134602-01)

re-optimised PACIFIC Carrier Board r4

Redesign of PACIFIC Carrier Board

We decided to re-optimize the routing of the PACIFIC Carrier Board

- for a higher production yield
- more strict routing constrains, to gain some margin for the sampling window size
- → 4 pairs of PACIFIC Clock lines (CLKIN_0~3) : routing length match < 1mm
- → 4 SYNC lines (SYNC_0~3): routing length match < 1 mm
- → 64 pairs of data lines (DATA_0~3_X) : routing length match <3mm.
- ➢ well seperate the analog input signals and the output data lines, the CLOCK lines
- from 8-layers to 14-layers
- Calculate impedance for Halogen Free (TU-862HF), and keep thickness 1.7mm

For the first 250 PACIFIC Carrier Boards, we will assemble first 10 PCBs, check with the SciFi full electronics (MB+CB) to make sure everything works fine after this optimization.

re-optimised PACIFIC Carrier Board r4

21

Redesign of PACIFIC Carrier Board

Redesign of PACIFIC Carrier Board & Mass Production

2018.09 - First 250 PACIFIC Carrier Boards finished ! (for first C-Frame of SciFi)

First Setup of SciFi C-Frame

Test with SiPM + Light Injection System

First Setup of SciFi C-Frame (Sci-Fi milestone of 2018)

BER test with SciFi FE

QA System for PACIFIC chips

Custom designed test DAQ (PACIFICROB): [fully tested, 4 for Heidelberg, 3 for Barcelona, 3 for Valencia]

- ✓ Altera Cyclone FPGA (clock generation, ASIC configuration, data process, sensor readout ...)
- ✓ precision clock conditioner to fine tune the clock for each ASIC Power adapter board
- ✓ (LVDS-SLVS convertor)
- ✓ 8-channel, 12-bit ADC
- ✓ USB interface to PC
- Socket Board:
 - ✓ 4 sockets to nip chips
 - ✓ Connected with FMC & controlling cable
- DC power supply
 - ✓ Output 5V/3A at least
- Linux PC
- Robot arm (Barcelona)

Mid connector

Main features of test results for one chip

test automatically update result to DB

finish all 1st batch 1420 PACIFIC5q test

final check the QA test routine

LHCb Production Interface

QA test running : 10 ASICs/run, ~100ASICs/hour

Xiaoxue Han (Logout)

All results can be found in Sci-Fi Production DB

_ R	eadout Box Productions	Find by Bar	code			Search	ł	nttps	://	scifi.	phy	/si.u	uni-ł	neidell	be	rg.c	le/d	b/prod/	Н	Jover prev
	PACIFIC ASICs										New PAC	CIFIC ASI	C (total: 141	0 <u>CSV</u> , <u>SCSV</u>)						
	PACIFIC Boards	Show filler																		
_ Q	Readout Box Operations uaroses QuarosSystems	Inventory	Origin	ID	Arrived	Tested	Location	Dimensions [mm x mm x mm]	Weight [kg]	<u>Material</u> composition	Comment	Initial current [mA]	Configured current [mA]	Failure	Vref	VrefDCFB	Summary report [.pdf]	Raw data [.root]	PACIFIC Boards	
	SiPMs for Quaroses Adapter boards	EPA00009	PI	PACIFIC5_Q- Adummy	2018-05-26	2018-06-07						0	0	I2C fails	0	0	-	rawData AsicQA testsystem8 ASICID PACIFIC5 Q- Adummy.root 2018-06-07 19:48:46 by Xiaoxue Han	Q	Modify
	Spiroc FEs Power supply units USBboards Laser mezzanines Spiroc ASICs Upload Quaros fileses	EPA00010		PACIFIC5_Q- A2104	2018-05-26	2018-06-07						434.4	511.8	trimDAC fails	27	6	PACIFIC5 Q- A2104.pdf 2018-06-07 20:21:10 by Xiaoxue Han	rawData AsicOA testsystem8 ASICID PACIFIC5 O- A2104 root 2616/06/07 19:48:50 by Xiaosue Han	<u>0</u>	Modify
		EPA00011	Ы	PACIFIC5_Q- A2105	2018-05-26	2018-06-07						411	511.8	Working	25	9	PACIFIC5 Q- A2105.pdf 2018-08-07 19:48:55 by Xisoxue Han	rawData AsiCOA teatsystem8 ASICID PACIFIC5 Q- A2105:rod 2018-06-07 19 48:58 by Xiaoxue Han	Q	<u>Modify</u>
		EPA00012	PI	PACIFIC5_Q- A2106	2018-05-26	2018-06-07						458.8	515	Working	29	9	PACIFIC5 Q- A2106.pdf 2018.06.07 19:49:02 by Xisoxue Han	rawData AsiCOA testsystem® ASICID PACIFIC5 Q- A2108.rod 2318-06-07 19 49 05 by Xiaoxue Han	٥	Modify

QA test for 1st batch of packaged PACIFIC5q

QA System for Carrier Boards

Custom designed test DAQ (PACIFICROB): [fully tested, 3 for Heidelberg (delivered), 3 for Barcelona, 3 for Valencia]

- ✓ Altera Cyclone FPGA (clock generation, ASIC configuration, data process, sensor readout ...)
- ✓ precise clock conditioner to fine tune the clock for each ASIC
- ✓ LVDS-SLVS convertor
- ✓ 8-channel, 12-bit ADC
- ✓ USB interface to PC

FMC connector intermedia board:

- ✓ Simple pin-to-pin adapter PCBs
- ✓ To avoid broken FMC connectors
- Charge injection board
- DC power supply
 - ✓ Output 5V/3A at least

Arbitrary waveform generatorLinux PC

QA System for Carrier Boards

Custom designed test DAQ (PACIFICROB): [fully tested, 3 for Heidelberg (delivered), 3 for Barcelona, 3 for Valencia]

- ✓ Altera Cyclone FPGA (clock generation, ASIC configuration, data process, sensor readout ...)
- precision clock conditioner to fine tune the clock for each ASIC
 (1) DS_SIVS convertor)
 External charge injection board
- ✓ (LVDS-SLVS convertor)
- ✓ 8-channel, 12-bit ADC
- ✓ USB interface to PC
- FMC connector intermedia board:
 - ✓ Simple pin-to-pin adapter PCBs
 - ✓ To avoid broken FMC connectors
- Charge injection board

DC power supply

- ✓ Output 5V/3A at least
- Arbitrary waveform generator
- Linux PC

FMC adapter board Mid connector

Controlling cable

Voltage sensor

External trigger

First 250 PACIFIC Carrier Boards Tested

LHCb Upgrade I: SciFi

- 一名博士后和一名博士生分别在CERN和海德堡参加SciFi 探测器的工作
- > 作为主力完成了全部闪烁光纤的质量检测 (QA)
- > 负责把SciFi探测器几何描述数据库从XML 转换为DD4HEP
- > 开发SciFi 探测器监控软件

LHCb Upgrade I: SciFi (LHCb China Group)

LHCb China Group (2018) finished:

- ✓ >1500 PACIFIC ASICs tested
- \checkmark Frontend Boards redesigned and verified
- ✓ 250 Frontend Boards manufactured and tested in China
- ✓ 6 Readout Electronic Quality Assurance System set up in Heidelberg, Barcelona and Valencia

***** 2019 To Do:

- ✓ ALL 12,000 PACIFIC ASICs to test (with Barcelona group)
- ✓ ALL 2,500 Frontend Boards to manufacture in China [in progress] and to test (with Valencia group)

LHCb Upgrade I: SciFi

Production Schedule

LHCb Upgrade I: UT

LHCb Upgrade I: Upstream Tracker (UT)

- 在高辐射的中心区域使用更抗辐射的n-in-p的硅微条技术,而在其余部分使用技术相对成熟价格较低的p-in-n探测器.
- 前端读出芯片(SALT)采集信号,数字化,并压缩数据,然后将电子信号传送到UT板条顶端的数据控制板 (DCB); DCB收集数据,转化为光信号,输送到地表的数据收集系统.

LHCb Upgrade I: Upstream Tracker (UT)
□ 在UT研发和建造过程中发挥关键作用,协调电子学及读出系统各部件的发展。
□ 测试 SALT芯片(版本2)的性能,及纠正设计问题。
□ 在10月份参加并成功领导了读出系统的第一次束流测试。

LHCb Upgrade II: ECAL

LHCb Upgrade II: 电磁量能器升级的模拟研究

- 利用Delphes软件开展快速模拟,优化电磁量能器的设计
 - > 通过对簇射横向发展的模拟,研究光子能量分辨和π⁰质量分辨

- 通过计算机模拟,研究电磁量能器的背景粒子流
 - > Upgrade II 本底增加,理解本底的大小、能量流分布对电磁量器 的设计和性能优化至关重要

结论:现有量能器不能满足Upgrade II 要求,需要提高颗粒度,引入时间信息。 下一步研究:高颗粒度取样型量能器 + 硅探测层用于提供快速时间测量

Thank you!

Questions?

第四届中国LHC物理工作会议

References:

.

.

- https://cds.cern.ch/record/2630472/files/passalevaichep%2007.07.pdf
- <u>https://cds.cern.ch/record/2650584/files/181206_Kruger.pdf</u>
- <u>https://cds.cern.ch/record/2648754/files/grauges-LHCb-</u> <u>NagoyaHfNPFP.pdf</u>

.