

Measurement of properties of Higgs boson in four-lepton final state at $\sqrt{S} = 13$ TeV

Qianying Guo on behalf of CMS collaboration

Outline

- Motivation
- Object selections
- Event reconstruction and selections
- Observables and categorization
- Background estimation
- Systematics Uncertainties
- Results
 - Signal strength—per production model
 - STXS—stage0
 - Combination based on 2016 and 2017 data
- Conclusion

Motivation

Standard model of particle physics

- Describle elementary particles and interactions except for gravity
- Local gauge symmetry assumed for interaction generation enforces massless particles contradicting with W and Z boson

➢Using Higgs mechanism found in 1964

- Generate W/Z mass through spontaneous electroweak symmetry breaking
- Predict a scale field responsible for boson mass and would also for fermion mass by adding Yukawa interaction

≻Higgs boson

- Particle corresponding to excitation of the scalar field
- Coupling to boson/fermion proportional to boson mass squared/fermion mass
- Mass M_H unknown
- Key to verify the current understanding of boson/fermion mass generation

Experimental observation of the Higgs boson

- 4th July 2012, CMS experiment together with ATLAS experiment at LHC announced the discovery of Higgs boson-like particle
- ~5.0 σ combined with data of 5.1 fb⁻¹ (7TeV) +5.3 fb⁻¹ (8TeV)

Higgs Production and Decay at LHC

- In spite of low BR, Higgs to 4l channel is one of the most important channel to measurement properties. (mass, spin-parity, width, fiducial cross section)
- ggggggg(a) ℓ^+

- A large signal-to-background ratio
- Complete reconstruction of final state decay products
- Excellent lepton momentum reconstruction

Objects

Selected muons

- Loose electrons -
 - $P_T > 5 \text{GeV}; |\eta| < 2.4$
 - $d_{xv} < 0.5 \ cm; \ d_z < 1 \ cm; SIP_{3D} < 3$
- PF D and tracker high P_T ID
- RelPFIso($\Delta R = 0.3$) < 0.35

٠

- $P_{T,\nu} > 2 \text{ GeV;} |\eta^{\gamma}| < 2.4; \text{relPFIso} < 1.8$
- Electron SC veto by PF reference
- Associated γ to the closest loose lepton
- $\Delta R(\gamma, l) < 0.5; \frac{\Delta R(\gamma, l)}{E_T^2 \chi} < 0.012;$ choose photon with lowest $\frac{\Delta R(\gamma, l)}{E_T^2 \chi}$
- Remove selected FSRs from lepton isolation cone for all loose leptons

> JETS

- AK4 PFCHs jets, JEC v6
- $P_T > 30 \text{ GeV}; |\eta| < 4.7; \text{ Tight PF jet ID}$
- Cleaned $\Delta R(jet, l/\gamma) > 0.4$
- Tight PU Jet ID
- B-tagger:
 - new b-tagged algorithm: DeepCSV medium WP = 0.4941
 - B-tagging SF applied

Selected electrons

- Loose electrons - $P_T > 7 \text{GeV}; |\eta| < 2.5$
- $d_{xy} < 0.5 \ cm; d_z < 1 \ cm; SIP_{3D} < 3$ BDT ID+Iso in 6 ($|\eta|, P_T$)bins
 - Significant reduction of election fakes thanks to the new BDT and pixel detector upgrade.

Event reconstruction and selections

• Z candidate

- Any OS-SF pair that satisfy $12 < m_{ll(\gamma)} < 120$ GeV
- Build all possible ZZ candidates defined as pairs of non-overlapping Z candidate; define Z_1 candidate with $m_{ll(\gamma)}$ closest to the POG m(Z) mass
 - $m_{Z1} > 40 \text{ GeV}; P_T(l1) > 20 \text{ GeV}; P_T(l2) > 10 \text{ GeV}$
 - $\Delta R > 0.02$ between each of the four leptons
 - $m_{ll} > 4$ GeV for OS pairs (regardless of flavour)
 - Reject 4 μ and 4e candidates where the alternative pair Z_aZ_b satisfies $|m_{Z_a}-m_Z|<|m_{Z_1}-m_Z|$ and $m_{Z_b}<12~{\rm GeV}$
 - $m_{4l} > 70 {
 m ~GeV}$
- If more than one ZZ candidate is left, choose the one of highest \mathcal{D}_{bkg}^{kin} .
- If \mathcal{D}_{bkg}^{kin} is the same, take the one with Z_1 mass closest to m_{Z_1}

Observables

- Two observables used: m₄₁; kd
- Three different kd discriminant applied.
 - Discriminant sensitive to gg/ $q\bar{q} \rightarrow 4l$ kinematics

$$\mathcal{D}_{bkg}^{kin} = \left[1 + rac{\mathcal{P}_{bkg}^{q\overline{q}}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}{\mathcal{P}_{sig}^{gg}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}
ight]^{-1}$$
 (1)

- New dedicated production-dependent \mathcal{D}_{kgd} discriminants used in VBF-2jet tagged and hadronic VH tagged categories
- An improvement in sensitivity of about 10 to 15% was observed.

Event categorization

• Selected events are classified into seven exclusive categories to improve the sensitivity to the Higgs boson production mechanisms.

- The VBF-2jet-tagged category requires exactly four leptons. In addition, there must be either two or three jets of which at most one is b tagged, or four or more jets none of which are b-tagged. Finally, $\mathcal{D}_{2jet} > 0.5$ is required.
- The VH-hadronic-tagged category requires exactly four leptons. In addition, there must be two or three jets, or four or more jets none of which are b-tagged. $\mathcal{D}_{VH} \equiv \max(\mathcal{D}_{ZH}, \mathcal{D}_{WH}) > 0.5$ is required.
- The VH-leptonic-tagged category requires no more than three jets and no b-tagged jets in the event, and exactly one additional lepton or one additional pair of OS, same-flavor leptons. This category also includes events with no jets and at least one additional lepton.
- The tīH-hadronic-tagged category requires at least four jets of which at least one is b tagged and zero additional leptons.
- The ttH-leptonic-tagged category requires at least one additional lepton.
- The VBF-1jet-tagged category requires exactly four leptons, exactly one jet and $D_{1jet} > 0.5$.
- Untagged category consists of the remaining selected events.

Background estimation

- Irreducible background
 - Production of $q \bar{q}$ annihilation or gluon fusion
 - Estimated using simulation
- Two dependent methods used to estimated Z+X background: OS and SS
- Fake rates calculated in Z+l control region
- Z+X yields estimated in 2 orthogonal regions of Z+II control region
- Final estimate combination of 2 methods

Channel	4e	4μ	2e2µ	4ℓ
$q\bar{q} \rightarrow ZZ$	235^{+32}_{-36}	443^{+36}_{-40}	572^{+50}_{-54}	1250^{+104}_{-114}
$gg \rightarrow ZZ$	$49.1_{-8.8}^{+8.7}$	$81.8^{+11.2}_{-10.7}$	$121.5^{+17.1}_{-16.3}$	$252.4^{+35.1}_{-33.5}$
Z + X	$17.1^{+6.4}_{-6.1}$	$35.4^{+12.7}_{-11.4}$	$47.8^{+16.4}_{-15.8}$	$100.3^{+21.3}_{-20.6}$
Sum of backgrounds	301^{+39}_{-43}	560^{+43}_{-47}	741^{+62}_{-65}	1602^{+126}_{-135}
Signal ($m_{\rm H} = 125$ GeV)	$13.9^{+1.9}_{-2.1}$	$28.9^{+2.5}_{-2.6}$	35.8 ± 3.3	$78.5^{+7.0}_{-7.1}$
Total expected	315^{+41}_{-45}	589^{+45}_{-49}	777^{+64}_{-67}	1681^{+131}_{-140}
Observed	307	602	797	1706

- Reducible background
 - Secondary leptons produced by heavy-flavor jets
 - Misidentified as leptons from decay of heavy-flavor hadron, in-flight decays of light mesons within jets, or (for electrons) decay of charged hadrons overlapping with π^0 decays.

(Main prosesses of producting these background: <u>Z+jets</u>, $t\bar{t}$ +jets, $Z\gamma$ +jets, WW+jets, WZ+jets)

Systematics Uncertainties

- Systematics calculated with 2017 MC and data
- Switched to recommended WG1 uncertainty scheme for gluon fusion

Summary of inclusive theory uncertainties				
QCD scale (gg)	\pm 3.9 %			
PDF set (gg)	\pm 3.2 %			
Bkg K factor (gg)	±10 %			
QCD scale (VBF)	+0.4/-0.3 %			
PDF set (VBF)	\pm 2.1 %			
QCD scale (WH)	+0.5/-0.7 %			
PDF set (WH)	\pm 1.9 %			
QCD scale (ZH)	+3.8/-3.1 %			
PDF set (ZH)	\pm 1.6 %			
QCD scale (tīH)	+5.8/-9.2 %			
PDF set (tīH)	\pm 3.6 %			
${ m BR}({ m H} ightarrow { m ZZ} ightarrow 4\ell)$	2 %			
QCD scale ($q\bar{q} \rightarrow ZZ$)	+3.2/-4.2 % %			
PDF set ($q\bar{q} \rightarrow ZZ$)	+3.1/-3.4 %			
Electroweak corrections ($q\bar{q} \rightarrow ZZ$)	\pm 0.1 %			

Summary of relative systematic uncertainties				
Common experimental uncertainties				
Luminosity	2.3 %			
Lepton identification/reconstruction efficiencies	3. – 12.5 %			
Background related uncertainties				
Reducible background fake rate variation (Z+X)	31 – 45 %			
Signal related uncertainties				
Lepton energy scale	0.05 – 0.3 %			
Lepton energy resolution	20 %			

Signal Strength – Production Models

- Perform multidimensional maximum likelihood fit to (m_{4l}, KD) templates in 21 channels (3×7)
- Total PDF is defined as: $\mathcal{L}_{2D}(m_{4\ell}, \mathcal{D}_{bkg}^{kin}) = \mathcal{L}(m_{4\ell})\mathcal{L}(\mathcal{D}_{bkg}^{kin}|m_{4\ell}).$

STXS – Stage 0

- Simplified template cross section (stage zero) with removed $\sigma_{\rm SM}$ theoretical uncertainties on overal signal cross section
- Theoretical uncertainties which can cause migration of events between the various categories are kept
- bbH (floated with $\mu_{\rm ggH}$) and tqH (floated with $\mu_{\rm ttH}$) contributions considered in the fit

Combination

	Inclusive	$\mu_{ m ggH,bar{b}H}$	$\mu_{ m VBF}$	$\mu_{ m VHhad}$	$\mu_{ m VHlep}$	$\mu_{t\bar{t}H,tqH}$
Expected	$1.00 \pm 0.10(\text{stat})^{+0.08}_{-0.06}(\text{exp. syst})^{+0.07}_{-0.05}(\text{th. syst})$	$1.00\substack{+0.17\\-0.16}$	$1.00\substack{+0.86\\-0.67}$	$1.00\substack{+2.39 \\ -1.00}$	$1.00\substack{+2.30\\-1.00}$	$1.00\substack{+1.80 \\ -1.00}$
Observed	$1.06 \pm 0.10(\text{stat})^{+0.08}_{-0.06}(\text{exp. syst})^{+0.07}_{-0.05}(\text{th. syst})$	$1.15\substack{+0.18 \\ -0.16}$	$0.69\substack{+0.75\\-0.57}$	$0.00\substack{+1.16 \\ -0.00}$	$1.25\substack{+2.46\\-1.25}$	$0.00\substack{+0.53 \\ -0.00}$

Results are combined based on the data of 2016 and 2017.

Conclusion

- Several measurement of Higgs boson in four-lepton final states at \sqrt{S} = 13TeV have been presented with data samples corresponding to an integrated luminosity of 41.5fb⁻¹
- Several improvements with respect to the published paper.
 - New electron BDT identification with isolation
 - Splitting of ttH category
 - New discriminants for VBF and VH production mechanism.
- Combination with 2016 and 2017 data are performed.
- Results are consistent with the SM expectation.

Backup

Distribution of Z_1 and Z_2

Distribution of m_{41} of 2017 data

Distribution of discriminant

Category discriminant

Kinematic discriminant

Data

Run-range	Dataset			Integrated luminosity
297046-299329	/DoubleMuon/Run20 /DoubleEG/Run2017E /MuonEG/Run2017B- /SingleElectron/Run20 /SingleMuon/Run201	17B-17Nov2017-v1/ 3-17Nov2017-v1/M 17Nov2017-v1/MI 017B-17Nov2017-v1 7B-17Nov2017-v1/1	/MINIAOD INIAOD NIAOD /MINIAOD MINIAOD	4.792 fb ⁻¹
299368-300676	/DoubleMuon/Run20 /DoubleEG/Run2017C /MuonEG/Run2017C- /SingleElectron/Run201 /SingleMuon/Run201	17C-17Nov2017-v1/ C-17Nov2017-v1/M -17Nov2017-v1/MI 017C-17Nov2017-v1/ 7C-17Nov2017-v1/1	/MINIAOD INIAOD NIAOD I/MINIAOD MINIAOD	9.755 fb ⁻¹
302030-303434	/DoubleMuon/Run20 /DoubleEG/Run2017I /MuonEG/Run2017D /SingleElectron/Run20 /SingleMuon/Run201	17D-17Nov2017-v1 D-17Nov2017-v1/M -17Nov2017-v1/M 017D-17Nov2017-v1 7D-17Nov2017-v1/	/MINIAOD IINIAOD NIAOD 1/MINIAOD MINIAOD	4.319 fb $^{-1}$
303824-304797	/DoubleMuon/Run20 /DoubleEG/Run2017E /MuonEG/Run2017E- /SingleElectron/Run20 /SingleMuon/Run201	17E-17Nov2017-v1/ E-17Nov2017-v1/M 17Nov2017-v1/MI 017E-17Nov2017-v1 7E-17Nov2017-v1/1	/MINIAOD INIAOD NIAOD ./MINIAOD MINIAOD	9.424 fb ⁻¹
305040-306462	/DoubleMuon/Run20 /DoubleEG/Run2017F /MuonEG/Run2017F- /SingleElectron/Run20 /SingleMuon/Run201	17F-17Nov2017-v1/ F-17Nov2017-v1/MI 17Nov2017-v1/MI 017F-17Nov2017-v1 7F-17Nov2017-v1/M	'MINIAOD INIAOD NIAOD /MINIAOD MINIAOD	13.50 fb^{-1}

During 2017, data samples recorded by CMS detector collected 41.37fb⁻¹

