

Hadron production at LHCb

Xianglei Zhu (朱相雷)

Tsinghua University

On behalf of the LHCb collaboration

The 4th China LHC Physics Workshop (CLHCP 2018) 19-22 December, 2018 CCNU, Wuhan

Outline

- The LHCb detector
- Heavy flavor production in *pp/p*Pb/PbPb JHEP 07 (2018) 134 JHEP 11 (2018) 194 arXiv: 1809.01404 LHCb-CONF-2018-004 LHCb-CONF-2018-003
- Hadron production in fixed-target experiments

arXiv:1808.06127 arXiv:1810.07907

• Summary

The LHCb detector

A single arm general purpose detector at forward rapidity !

pseudorapidity acceptance $2 < \eta < 5$

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

Υ production in pp at 13 TeV with 277 pb⁻¹

-+ Data

Ratios in $pp: \Upsilon(nS)/\Upsilon(1S)$ and 13/8 TeV

JHEP 07 (2018) 134

LHCb pPb datasets

- Rapidity Coverage
 - *y**: rapidity in nucleon-nucleon cms
 - $y_{\rm cms} = \pm 0.465$
 - Forward: $1.5 < y^* < 4.0$
 - Backward: $-5.0 < y^* < -2.5$
 - Common region: $2.5 < |y^*| < 4.0$

$$\sqrt{s_{\rm NN}} = 5.02 \,{\rm TeV} \,(2013, {\rm Run} \,{\rm I})$$

• $pPb (1.06 \text{ nb}^{-1}) + Pbp (0.52 \text{ nb}^{-1})$

- $\sqrt{s_{\rm NN}} = 8.16 \,{\rm TeV} \,(2016, {\rm Run \, II})$
 - *p*Pb (13.6 nb⁻¹) + Pb*p* (21.8 nb⁻¹)

LHCb: frontier experiment in phase space

Thanks to the boost, the high resolution, the low- $p_{\rm T}$ reach and the fast read-out

- disentangle initial state from other phenomena
- constrain initial state
- sensitive to the physics on the saturation scale

$\Upsilon(nS)$ signals in *p*Pb at 8.16 TeV

 $\Upsilon(1S) R_{pPb}$ at 8.16 TeV

Nuclear modification factor:

$$R_{pPb}(p_{\rm T}, y^*) = \frac{1}{208} \frac{{\rm d}^2 \sigma_{pPb}(p_{\rm T}, y^*)/{\rm d}p_{\rm T} {\rm d}y^*}{{\rm d}^2 \sigma_{pp}(p_{\rm T}, y^*)/{\rm d}p_{\rm T} {\rm d}y^*}$$

• Suppression in the forward *p*Pb region confirmed

 $\Upsilon(2S) R_{pPb}$ at 8.16 TeV

pPb, Pbp

EPPS16

nCTEQ15

EPS09LO+comovers nCTEQ15+comovers

Nuclear modification factor:

$$R_{pPb}(p_{\rm T}, y^*) = \frac{1}{208} \frac{{\rm d}^2 \sigma_{pPb}(p_{\rm T}, y^*)/{\rm d}p_{\rm T} {\rm d}y^*}{{\rm d}^2 \sigma_{pp}(p_{\rm T}, y^*)/{\rm d}p_{\rm T} {\rm d}y^*}$$

• More suppression in the forward *p*Pb region

 $R_{pPb}^{Y(2S)}$

.8 LHCb

 $p_{\rm T}$ <25 GeV/c

.6

1.4

1.2

0.8

0.6 0.4

0.2

$\Upsilon(2S)$ to $\Upsilon(1S)$ ratio in *p*Pb at 8.16 TeV

Lнср

$\Upsilon(nS)$ double ratios in *p*Pb at 8.16 TeV

Open beauty signals in pPb at 8.16 TeV

Open beauty R_{pPb} at 8.16 TeV

- Forward: suppressed, increases with $p_{\rm T}$
- Backward: ≈ 1
- Data are consistent with nPDF calculations and J/ψ from *b* decay
- Beauty suppression is comparable to charm

Open beauty forward-backward ratio at 8.16 TeV

Forward-backward ratio:

$$R_{\rm FB} = \frac{\sigma(+|y^*|, p_{\rm T})}{\sigma(-|y^*|, p_{\rm T})}$$

- $R_{\rm FB}$ for *B* mesons < 1, consistent with nPDF calculations
- $R_{\rm FB}$ for B^0 and B^+ are similar
- $R_{\rm FB}$ for Λ_b^0 suffers larger statistical uncertainty

LHCb-CONF-2018-004

Open beauty particle ratios at 8.16 TeV

Prompt Λ_c^+ measurement in *p*Pb at 5 TeV

arXiv: 1809.01404, submitted to JHEP *Jiayin Sun, HI session*

 $\Lambda_c^+ \to p K^- \pi^+$

Prompt Λ_c^+ fraction extracted from fitting impact parameter (IP) distribution

Prompt Λ_c^+ forward-backward ratio at 5 TeV

• Consistent with nPDF HELAC-onia calculations within uncertainty

Charmed baryon to meson ratio at 5 TeV

- Sensitive to charm hadronization mechanisms
- Calculations based on measured *pp* cross-section

arXiv: 1809.01404, submitted to JHEP

PbPb collisions with LHCb

Ion-Ion runs:

- \succ 10 µb⁻¹ PbPb at 5.02 TeV (2015)
- ▶ 0.4 µb⁻¹ XeXe at 5.44 TeV (2017)
- $> ~ 200 \ \mu b^{-1} \ PbPb$ at 5.02 TeV (2018)
- Collision centrality measured by the calorimeter
- Saturation in the Vertex Locator for the most central PbPb collisions
- LHCb current tracking algorithm efficient up to 50% most central collisions
- Physics studies limited to 50% less central events

 D^0 and J/ψ in PbPb (2015)

J/ψ in PbPb ultra peripheral collisions

Interaction between the magnetic field of the ions

 \rightarrow Coherent J/ψ photo-production, sensitive to nPDF, ...

No additional particle production

 \rightarrow Constraint on model space

3000

2018 PbPb run: ~20 times more luminosity and include other final states in exclusive γ -induced reactions

Candidates / (13 MeV

 10^{3}

 10^{2}

10

 10^{-1}

 J/ψ

W.,

The LHCb fixed-target experiment

JINST 9 (2014) P12005

Unique fixed-target configuration at the LHC

Inject noble gas (He, Ne, Ar, ...) inside the Vertex Locator $\sim 10^{-7}$ mbar

- Installed for beam-gas imaging
- In parallel with collider data taking
- Fully benefit from LHCb excellent performance
- \rightarrow New physics opportunities with *p*-nucleus and Pb-nucleus collisions

Heavy-ion and cosmic ray related physics

Fixed-target kinematic region $\sqrt{s_{NN}} \in [69, 115]$ GeV Backward rapidity region PbNe data were just taken in 2018

12/21/2018

Charm production in fixed-target *p*He collisions

Charm production in fixed-target *p*He collisions

arXiv:1810.07907, submitted to PRL

Cross-sections are compared with

- Phenomenological parametrisations (JHEP 03 (2013) 122) for J/ψ \rightarrow Shape in agreement
- HELAC-onia model EPJC 77 (2017) designed and tuned for collider data
 → Reasonable agreement

No indication of visible valence-like intrinsic charm in rapidity distribution Starting point for more detailed proton-Neon and future Lead-Neon collisions

\bar{p} production in fixed-target pHe collisions

LHCb ГНСр

The first direct measurement of antiproton production in pHe collisions

- Incident proton beam energy, 6.5 TeV
- Integrated luminosity, 0.5 nb⁻¹

Important input for the study of antiproton cosmic rays from space-borne experiments

Summary

- The LHCb detector has unique capabilities for heavy flavor measurements at LHC in both collider and fixed-target modes.
- (Selected) recent production measurements in 2018
 - Υ(*nS*) in *pp* 13 TeV
 - $\Upsilon(nS), B^0, B^+, \Lambda_b^0, \Lambda_c^+$ in pPb collisions
 - J/ψ in ultra peripheral PbPb collisions
 - First charm and anti-proton measurements in fixed-target collisions
- A lot more results to come with the large data samples of *pp/pPb/PbPb* and fixed-target collisions collected in Run II.