Exotic hadrons and doubly heavy baryons at LHCb

尹航 华中师范大学

第中師範大學

Dec. 21st, 2018

Introduction

Recent LHCb results on exotic hadrons and Doubly heavy baryons:

- Results from Exotic hadrons
- Results from Doubly heavy baryons

Summary

Success of the constituent quark model

Quark model, introduced by Gell-Mann and Zweig, in 1964

- Construct numerous hadrons using quarks
- \Rightarrow SU(4) and SU(5) to include new quarks: charm (c), and bottom (b)

Exotic hadrons

- Exotic hadrons: anything beyond meson $(q\bar{q})$ and baryon (qqq) scheme
- Could be various multiquark states, hadron molecules, glueballs, hybirds ...

© First seen by Belle in 2003 Phys. Rev. Lett. 91, 262001 (2003)

VOLUME 91, NUMBER 26 PHYSICA

PHYSICAL REVIEW LETTERS

week ending 31 DECEMBER 2003

Observation of a Narrow Charmoniumlike State in Exclusive $B^{\pm} \rightarrow K^{\pm} \pi^{+} \pi^{-} J/\psi$ Decays

 $B^+ \rightarrow X(3872)K^+$ $X(3872) \rightarrow J/\Psi \pi^+ \pi^-$

Expected quark content [$c\overline{c}u\overline{u}$] Internal structure is still under discussion

4

Exotic zoo

Not a very strict naming scheme

- ⇒ X : neutral, first seen in B-meson decays, positive parity
- → Y : neutral, first seen in ee annihilation with initial state radiation, negative parity
- Z : charged (and their isospin) partners)
- P : pentaguarks

No clear pattern seen yet

Exotic and doubly heavy baryons at LHCb

Theoretical models

Lots of predictions within different theoretical models

Not only to find new exotic hadrons, but also to determine their quantum numbers

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

LHCb detector

○ LHCb is a forward spectrometer suited for *b*, *c* hadrons: $2 < \eta < 5$

- Momentum resolution:
 - 0.5% at 5 GeV, 1.0% at 200
 GeV
- Excellent track and vertex reconstruction
- Good particle-ID separation

Exotic hadrons

$Z_c(4100)^- \text{ in } B^0 \to \eta_c(1S)K^+\pi^-$

arXiv:1809.07416 Submitted to EPJC

• Understand pattern of Z_c^- states

⇒ $Z_c(3900)^-$ seen by BES III, and Belle in $Y(4260) \rightarrow Z_c^- (\rightarrow J/\Psi \pi^-)\pi^+$

Charmonium-like charged stats: exotic

 $\circ \eta_c \pi^-$ accesses J^P other than 1⁺, that several Z_c^- confirmed to be

$Z_c^{+,0}(3900)$	3886.6 ± 2.4	28.1 ± 2.6	1^{+-}	$e^+e^- \to \pi^{-,0} + (J/\psi \pi^{+,0})$	BESIII (92; 101), Belle (88)
				$e^+e^- \to \pi^{-,0} + (D\bar{D}^*)^{+,0}$	BESIII (102; 103)
$Z_c^{+,0}(4020)$	4024.1 ± 1.9	13 ± 5	$1^{+-}(?)$	$e^+e^- \to \pi^{-,0} + (h_c \pi^{+,0})$	BESIII (93; 104)
				$e^+e^- \to \pi^{-,0} + (D^*\bar{D}^*)^{+,0}$	BESIII (105; 106)
$Z^{+}(4050)$	4051^{+24}_{-43}	82^{+51}_{-55}	??+	$B \to K + (\chi_{c1} \pi^+)$	Belle (107), BaBar (108)
$Z^{+}(4200)$	4196^{+35}_{-32}	$370^{+\ 99}_{-149}$	1^+	$B \to K + (J/\psi \pi^+)$	Belle (51)
				$B \to K + (\psi' \pi^+)$	LHCb (46)
$Z^{+}(4250)$	4248^{+185}_{-45}	177^{+321}_{-72}	??+	$B \to K + (\chi_{c1} \pi^+)$	Belle (107), BaBar (108)
$Z^{+}(4430)$	4477 ± 20	181 ± 31	1^{+}	$B \to K + (\psi' \pi^+)$	Belle (45; 109; 110), LHCb (46; 111)
				$B \to K + (J\psi \pi^+)$	Belle (51)

2018/12/21

Exotic and doubly heavy baryons at LHCb

$B^0 \rightarrow \eta_c(1S)K^+\pi^-$ signal

• $L = 4.7 \text{ fb}^{-1}$, including Run-1 + Run-2 (2011-2016) data • Multi-stage signal/bkg separation fits in $m(p\bar{p}K^+\pi^-)$ and $m(p\bar{p})$

$B^0 \rightarrow \eta_c(1S)K^+\pi^-$ 2D mass fit

- Unlike narrow J/Ψ , $\Psi(2S)$, η_c has $\Gamma_0 \sim 32$ MeV
- 2D fit in $m(p\bar{p}K^+\pi^-)$ and $m(p\bar{p})$
- Dalitz analysis: K^* resonances + "non-resonant" $K\pi$ and $p\bar{p}$ S-waves

Evidence for an exotic $Z_c(4100)^-$

arXiv:1809.07416 Submitted to EPJC

 \bigcirc Good description in all variables after adding an exotic Z_c component

Search for beauty teraquarks: $X_{b\overline{b}b\overline{b}}$

JHEP 10 (2018) 086

- No hadron containing > 2 heavy quarks has been observed so far
- Theoretical prediction:
 - ⇒ Mass within [18.4, 18.8] GeV, $\sigma \times B(Yl^+l^-) \sim 1$ fb
 - → Typically below $\eta_b \eta_b$ threshold: could decay to $Yl^+l^ (l = e, \mu)$

LHCb search:

 $\succ X_{b\overline{b}b\overline{b}} \rightarrow Y(1S)\mu^{+}\mu^{-}, \text{ where } Y(1S) \rightarrow \mu^{+}\mu^{-}$

Search for beauty teraquarks: $X_{b\overline{b}b\overline{b}}$

- \bigcirc Cut-based selection, with J/Ψ mass veto
- Y(1S) yields after selection (±2.5 σ region): ~6 × 10⁶
- No significant excess is seen in data, upper limit are set

JHEP 10 (2018) 086

\mathcal{Z}_{cc}^{++} measurements

Studies of Ξ_{cc} by SELEX experiment

• SELEX (Fermilab E781) claimed observation of $\mathcal{Z}_{cc}^+(ccd)$ in $\mathcal{Z}_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $\mathcal{Z}_{cc}^+ \to pD^+ K^-$ decays

- ⇒ Short lifetime: $\tau(\Xi_{cc}^+) < 33$ fs @90% CL, but not zero
- ⇒ Large production: $R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} \sim 20\%$
- Mass (combined): 3518.7 ± 1.7 MeV

d

Observation of \mathcal{Z}_{cc}^{++}

Phys. Rev. Lett. 119, 112001 (2017)

 $\bigcirc \Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ observed by LHCb using 2016 data

\mathcal{Z}_{cc}^{++} lifetime

- Inconsistent with zero in the observation paper
- A lifetime measurement is critical:
 - To confirm it is a weak decay
 - Necessary ingredient for theoretical prediction of BR
 - → Important information for experimental exploration of Ξ_{cc}^{++}
 - To test various predictions from QCD model

2018/12/21

Exotic and doubly heavy baryons a

Mass fit

Yields: (2016) $E_{cc}^{++}: 304 \pm 35$ $\Lambda_b^0: 3379 \pm 119$

Signal: Double-sided Crystal-Ball + Gaussian
 Background: 2nd order Chebychev

Exotic and doubly heavy baryons at LHCb

Lifetime fit

Search for $\mathcal{Z}_{cc}^{++} \to \mathcal{Z}_{c}^{+} \pi^{+}$

 $\bigcirc \Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$: one of the best channels to confirm Ξ_{cc}^{++}

- ⇒ $BR(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) \sim \mathcal{O}(1\%)$ Prediction
- ⇒ $BR(\Lambda_c^+ \to p^+ K^- \pi^+) \sim (6.35\%)$, Measurement $BR(\Xi_c^+ \to p^+ K^- \pi^+) \sim (2\%)$ Prediction

⇒ Fewer tracks (4 tracks) → higher efficiency

Mass fit

Phys. Rev. Lett. 121, 162002 (2018)

Yields: (2016) $E_c^+ \pi^+: 91 \pm 20$ $\Lambda_c^+ K^- \pi^+ \pi^+: 289 \pm 35$

- Signal: Double-Sided Crystal-Ball + Gaussian
- Background: Exponential function
- $O M(\mathcal{Z}_{cc}^{++}) = M(\mathcal{Z}_{c}^{+}\pi^{+}) M(\mathcal{Z}_{c}^{+}) + M_{PDG}(\mathcal{Z}_{c}^{+})$

23

• The measured Ξ_{cc}^{++} mass is (with $\Xi_{c}^{+}\pi^{+}$ channel): ⇒ 3620.56 ± 1.5 (*stat*) ± 0.4 (*syst*) ± 0.3 (\mathcal{Z}_{c}^{+}) MeV/ c^{2}

Ratio of branching fraction is defined as

$$= \frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} \times \frac{\mathcal{B}(\Xi_{c}^{+} \to pK^{-}\pi^{+})}{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})}$$
$$= \frac{N(\Xi_{c}^{+}\pi^{+})}{N(\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} \cdot \frac{\varepsilon(\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})}{\varepsilon(\Xi_{c}^{+}\pi^{+})}$$

consistent with prediction

 $\mathcal{R} = 0.035 \pm 0.009 (stat) \pm 0.003 (syst)$

Phys. Rev. Lett. 121, 162002 (2018)

Measured results

Summary

LHCb detector is designed for the heavy flavour physics

• The exotic studies sector is rapidly developing

- Many new states confirmed, or waiting for confirmation
- Still a large area for studies: both experimental and theoretical sides

• LHCb has made significant progresses in the study of: Ξ_{cc}^{++}

- → [PRL 119, 112001 (2007)]: Discovery of Ξ_{cc}^{++}
- ⇒ [PRL 121, 162002 (2018)]: Confirmation of the discovery of Ξ_{cc}^{++} using $\Xi_{c}^{+}\pi^{+}$ channel
- ⇒ [PRL 121, 052002 (2018)]: Measurement of Ξ_{cc}^{++} lifetime: long lifetime as expected

Stay tuned for new results !

Backup

LHCb integrated luminosity

Today's talk with 2016 (1.7 fb⁻¹) data

Thanks to the LHC team!

LHCb trigger

Run real-time alignment and calibration of the detector

- Data buffered out of first software trigger stage
- Second software trigger runs asynchronously
- Permits Turbo real-time analysis strategy
 - Candidates reconstructed at the trigger level saved directly for offline analysis + (online alignment and calibration)

The first two analyses of today's talk benefit from the Turbo stream.

Comput. Phys. Commun. 208 (2016) 35-42 Int. J. Mod. Phys. A 30, 1530022 (2015)

Weakly decaying *b*-flavoured pentaquarks

PRD 97 (2018) 032010

Skyrme model: heavy quarks give tightly bound pentaquarks

PLB 590(2004) 185; PLB 586(2004)337; PLB 331(1994)362

Search for mass peaks below strong decay threshold

Mode	Quark content	Decay mode	Search window
Ι	$\overline{b}duud$	$P^+_{B^0p} \to J/\psi K^+\pi^-p$	$4668{-}6220~{\rm MeV}$
II	$b\overline{u}udd$	$P^{-}_{\Lambda^0_{\iota}\pi^-} \to J/\psi K^-\pi^- p$	$46685760~\mathrm{MeV}$
III	$b\overline{d}uud$	$P^{+^{o}}_{\Lambda^{0}_{t}\pi^{+}} \rightarrow J/\psi K^{-}\pi^{+}p$	$46685760~\mathrm{MeV}$
\mathbf{IV}	$\overline{b}suud$	$P^{+}_{B^0_s p} \rightarrow J/\psi \phi p$	$50556305~\mathrm{MeV}$

• Upper limit on production ratio $\sigma \cdot B$ wrt $\Lambda_b^0 \to J/\Psi K^- p$

$$R = \frac{\sigma(pp \to P_B X) \cdot \mathcal{B}(P_B \to J/\psi X)}{\sigma(pp \to \Lambda_b^0 X) \cdot \mathcal{B}(\Lambda_b^0 \to J/\psi K^- p)}$$

Weakly decaying *b*-flavoured pentaquarks

PRD 97 (2018) 032010

O No evidence for signal, 90% CL upper limits are set for the ratio

Exotic and doubly heavy baryons at LHCb

Hadron spectroscopy @ LHCb

2018/12/21

Exotic and doubly heavy baryons at LHCb

Get from M. Pappagallo 30

Search for dibaryon state

 W^{\cdot}

2700

• A dibaryon state [cd][ud][ud] could be produced in Λ_b^0 decays to final state $\Lambda_c^+ \pi^+ p \bar{p}$ L. Maiani, et al. PLB 750 (2015) 37

2018/12/21

Exotic and doubly heavy baryons at LHCb

 $D_c^+ \to \Lambda_c^+ \pi^- p$

Search for dibaryon state

Ratio of branching fractions

$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = 0.0540 \pm 0.0023 \pm 0.0032$$

• No obvious dibaryon peak in $m(\Lambda_c^+\pi^-p)$ spectra

2018/12/21

Exotic and doubly heavy baryons at LHCb

SELEX result in tension with predictions

O Models to determine masses of ground state and excitations:

- (non-) relativistic QCD potential models, triple harmonic-oscillator potential model, QCD sum rules, bag model or quark model ...
- ⇒ Predicted $\Xi_{cc}^{+,++}$ masses in range **3.5 3.7** GeV,
- ⇒ Masses of Ξ_{cc}^+ and Ξ_{cc}^{++} only differ by a few MeV due to u, d symmetry

No confirmation from other experiments

© Fixed target: FOCUS (Fermilab E831) Nucl. Phys. Proc. Suppl. 115 (2003) 33

- Studies charm hadrons produced in photon-nuclear fixed target collisions
- © Electron colliders: Babar, Belle BaBar: PRD 74 (2006) 011103 Belle: PRL 97 (2006) 162001 \Rightarrow Large Λ_c^+ yields, 0.6 (0.8) M at Babar (Belle)

O Hadron Collider: LHCb

(50) = 12 (2013) 090 (50) = 12 (2013) 090 (50) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090 (7) = 12 (2013) 090

2018/12/21

Exotic and doubly heavy baryons at LHCb

Selections

○ $\Lambda_c^+ \rightarrow pK^-\pi^+$: ⇒ p, K^-, π^+ tracks: positive particle ID, not produced from primary vertices ⇒ Λ_c^+ : good vertex quality, separated from primary vertices ⇒ p, K^-, π^+ tracks and Λ_c^+ have large p_T

Multivariate Selection:

Mass spectrum

- A significant structure in right sign (RS) combinations
- Not present in wrong sign (WS) combinations
- Not observed for Λ_c^+ background candidates
- Distributions similar except the peak in RS

Exotic and doubly heavy baryons at LHCb

Mass fitting

- Signal yield: 313 <u>+</u> 33
- Resolution: 6.6 \pm 0.8 MeV, consistent with simulated value
- Local significance > 12σ

Compared with SELEX results

○ Large mass difference: $m(\Xi_{cc}^{++})_{LHCb} - m(\Xi_{cc}^{+})_{SELEX} = 103 \pm 2$ MeV

Inconsistent with being isospin partners

• Production: $N(\Xi_{cc})/N(\Lambda_c^+)$ much smaller in LHCb result

Analysis strategy

• Same data sample, event selection as previous Ξ_{cc}^{++} observation

- Specific trigger requirement to simplify trigger efficiency determination
- → Signal yields (2016): 313 → 304

• Measure decay time distribution relative to $\Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-$

Acceptance correction based on MC

Weighted unbinned maximum likelihood fit (sFit)

Y. Xie, <u>arXiv:0905.072</u>

$$f_{\mathcal{Z}_{cc}^{++}}(t) = f_{\Lambda_b^0}(t) \times \frac{\epsilon_{\mathcal{Z}_{cc}^{++}}}{\epsilon_{\Lambda_b^0}} \times e^{-\left(\frac{t}{\tau_{\mathcal{Z}_{cc}^{++}}} - \frac{t}{\tau_{\Lambda_b^0}}\right)}$$

Predictions: long lived \mathcal{Z}_{cc}^{++}

W-exchange

• Predicted $\tau(\Xi_{cc}^{++})$ in range of [0.20, 1.05] ps

- Diquark model, effective constituent model, NRQCD potential model, harmonic oscillator model …
- Significant non-spectator contribution from Pauli-Interference diagrams

Pauli-interference

- $\circ \tau(\Xi_{cc}^{++}) \sim 3 4 \tau(\Xi_{cc}^{+})$
 - → Destructive Pauli interference in Ξ_{cc}^{++} decays
 - → W-exchange between c and d quarks only in Ξ_{cc}^+ decays

Lifetime fit

U

Systematic Uncertainty

Source	Uncertainty (ps)
Signal and background mass models	0.005
Correlation of mass and decay-time	0.004
Binning	0.001
Data-simulation differences	0.004
Resonant structure of decays	0.011
Hardware trigger threshold	0.002
Simulated Ξ_{cc}^{++} lifetime	0.002
Λ_b^0 lifetime uncertainty	0.001
Sum in quadrature	0.014

O Binning:

 Systematics due to binned acceptance estimated with pseudo experiments

O Resonant:

→ Weight MC to match $M(K^-\pi^+\pi^+)$ (for \mathcal{Z}_{cc}^{++}), and $M(\pi^-\pi^+\pi^-)$ (for Λ_b^0) distributions in data

Measured results:

$\tau(\Xi_{cc}^{++}) = 0.256^{+0.024}_{-0.022}(\text{stat}) \pm 0.014 \text{ (syst) ps}$

Cross-checks and Results

Various cross-checks had been done: no evidence of other effects

- → Charge: Ξ_{cc}^{++} vs. $\overline{\Xi}_{cc}^{--}$
- Magnet polarities: Down vs. Up

Number of PV

- Binned χ^2 fit: consistent with nominal result
- Λ_b^0 lifetime using simulation-based acceptance correction, consistent with PDG Value

Confirmation of \mathcal{Z}_{cc}^{++} with $\mathcal{Z}_{c}^{+}\pi^{+}$ channel First measurement of \mathcal{Z}_{cc}^{++} lifetime: weakly decay

$\mathcal{Z}_c^+\pi^+$ Prediction

$$\mathcal{B}(\Xi_{\rm cc}^{++} \to \Xi_{\rm c}^{+} \pi^{+}) = \left(\frac{\tau_{\Xi_{\rm cc}^{++}}}{300 \,\mathrm{fs}}\right) \times 7.2\%.$$

$$\begin{aligned} &\mathcal{B}(\Xi_{c}^{+} \to pK^{-}\pi^{+}) = (2.2 \pm 0.8)\%. \\ &\text{as } \mathcal{B}(\Xi_{c}^{+} \to p\overline{K}^{*0}) / \mathcal{B}(\Xi_{c}^{+} \to pK^{-}\pi^{+}) = 0.54 \pm 0.10 \quad [33]. \\ &\text{Besides, the relation } \mathcal{A}(\Xi_{c}^{+} \to p\overline{K}^{*0}) = \mathcal{A}(\Lambda_{c}^{+} \to \Sigma^{+}K^{*0}) \\ &\text{holds under } U\text{-spin symmetry. With the measurement} \\ &\text{of } \mathcal{B}(\Lambda_{c}^{+} \to \Sigma^{+}K^{*0}) = (0.36 \pm 0.10)\% \quad [34], \text{ the branching} \end{aligned}$$

$$\mathcal{B}(\Xi_{\rm cc}^{++} \to \Sigma_{\rm c}^{++}(2455)\overline{\rm K}^{*0}) = \left(\frac{\tau_{\Xi_{\rm cc}^{++}}}{300\,{\rm fs}}\right) \times (3.8 \sim 24.6)\%,$$
(11)

2018/12/21

Exotic and doubly heavy baryons at LHCb

Signal and control channels

- Signal channel: $\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}$, with $\Xi_{c}^{+} \to pK^{-}\pi^{+}$
- Control channels:

$$\stackrel{>}{\rightarrow} \Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+, \text{ with } \Lambda_c^+ \to p K^- \pi^+$$

 $\Rightarrow \Lambda_b^0 \to \Lambda_c^+ \pi^+ \pi^- \pi^-, \Lambda_b^0 \to \Lambda_c^+ \pi^-, \text{ with } \Lambda_c^+ \to p K^- \pi^+$

 $\Rightarrow \Lambda_b^0$ data is used to calibrate trigger efficiency, and life time measurement

Exotic and doubly heavy baryons at LHCb

Event selection

- Hadron trigger: hardware trigger (p, K, π) , and high level software trigger (Ξ_c^+)
- Final state hadrons, p, K, π: particle ID, not produced from primary vertex (PV)
- $\land \Lambda_c^+$ or Ξ_c^+ : good vertex quality, separated from PV
- Multivariate selector is used to further suppress the backgrounds
 - ⇒ p_T , decay angle, vertex fitting quality, IP χ^2 , flight distance

As a follow-up analysis of
$$\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$$
,
 $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$ has similar selection cuts
as in previous analysis.

Mass measurement

• The measured \mathcal{Z}_{cc}^{++} mass is (with $\mathcal{Z}_{c}^{+}\pi^{+}$ channel):

⇒ 3620.56 ± 1.5 (*stat*) ± 0.4 (*syst*) ± 0.3 (\mathcal{Z}_c^+) MeV/ c^2

- Consistent with $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ result:
 - ⇒ 3621.40 ± 0.72 (*stat*) ± 0.27 (syst) ± 0.14 (Λ⁺_c) MeV/c²
- Combined results: ⇒ 3621.24 ± 0.65 (stat) ± 0.31 (syst) MeV/c² Confirm previous LHCb observation of Ξ_{cc}^{++} LHCb LHCb

Branching fraction measurement

The ratio of branching fraction is defined as:

$$\mathcal{R} = \frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} \times \frac{\mathcal{B}(\Xi_{c}^{+} \to pK^{-}\pi^{+})}{\mathcal{B}(\Lambda_{c}^{+} \to pK^{-}\pi^{+})}$$
$$= \frac{N(\Xi_{c}^{+}\pi^{+})}{N(\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} \cdot \frac{\varepsilon(\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})}{\varepsilon(\Xi_{c}^{+}\pi^{+})}$$

No direct branching fraction measurement of $\Xi_c^+ \rightarrow p K^- \pi^+$ from experiments.

Measure the signal yields and efficiency for each channel

- $\bigcirc \mathcal{R} = 0.035 \pm 0.009 (stat) \pm 0.003 (syst)$
 - Consistent with prediction

2018/12/21

Uncertainty

Ξ	$Z_{cc}^{++} ightarrow \Xi_c^+ \pi^+$ channel	
Source	Mass $[MeV/c^2]$	$\mathcal{R}(\mathcal{B})$ [%]
Momentum calibration	0.38	
Selection bias correction	0.10	
Fit model	0.05	5.2
Relative efficiency		6.5
Simulation modelling		1.2
Selection		0.7
Sum in quadrature	0.40	8.5

With limited statistics of both signal and control samples, the dominated uncertainty is statistical uncertainty (1.5 MeV, 0.009)