Latest results on the SM Higgs boson in the WW decay channel using the ATLAS detector

arXiv:1808.09054, accepted by PRB

Claudia Bertella, on behalf of ATLAS Collaboration **The 4th China LHC Physics Workshop (CLHCP 2018)** 21-December-2018

C. Bertella

C. Bertella

ggF/VBF Higgs oson

- Spin zero Higgs: charged leptons preferentially emitted in same direction
 - \rightarrow m_{II} and $\Delta \phi_{II}$ are used in the event selection or in the **BDT** training
- Signal process can not be fully reconstructed \rightarrow presence of neutrinos
- VBF → two jets with large rapidity gap
 - Suppressed hadronic activity in central region

Jets bin categorisation

Backgrounds

Main backgrounds:

- WW: estimated with MC simulation, normalisation shape with data for ggF
- Top and $Z \rightarrow \tau \tau$: shape from MC simulation, normalisation estimated with data
- Mis-Id: data-driven from events with one lepton satisfying only loose but failing tight ID criteria; fake rate measured in a Z-jet sample

WW background estimation N_{jet}≤1

Category

 $N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0 \text{ ggF}$

 $N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1 \text{ ggF}$

 $N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ VBF}$

- Higgs signal at low m_{ll}
- WW control region at high m_{ll}
- Normalize WW to data in CR
- Main uncertainties:
 - gg \rightarrow WW in the Signal region
 - QCD and matching scales contribute up to 5%(12%) to $\sigma_{ggF}(\sigma_{VBF})$

WW

 1.06 ± 0.09

 0.97 ± 0.17

Top-quark background estimation

Category

Events with 1 b-jet are used as control regions

b-jet veto to suppress WW in N_{jet}=1

Top-quark background normalisation constrained with the control region

C. Bertella

Main uncertainties:

CLHCP2018 -21-December-2018

 $t\bar{t}/Wt$

Categorisation of the ggF signal region

Split SR in m_{II} , $p_T^{sub-lead lep}$, and flavour channels $e\mu/\mu e$

- Improves control of different backgrounds
 - Different
 background
 composition in each
 category
 - Enhances sensitivity
 - Splits defined for both N_{jet}= 0 and N_{jet}= 1 signal regions
- •m_⊤ distribution per category
 - ▶8 bins (6 bins) for N_{jet} =0 (Njet=1)

VBF identification

Selection of VBF Higgs boson candidate

- Veto presence of extra jets between the two leading jets
- Central Higgs boson decay
- Veto Z mass window
- Properties of H→WW*→evµv decay and VBF topology are used in a boosted decision tree
 - ► H→WW*→eνµν: m_{II}, $\Delta \phi_{II}$, m_T
 - VBF topology: m_{jj} , Δy_{jj} , $\eta_{centrality}$, $\sum M_{lj}$, p_T^{tot}

Highest ranked variables: m_{jj} and Δy_{jj} ,

Combined ggF and VBF fit

Signal regions

 \mathbf{M}_{T} in **16 ggF SR** categories

BDT with 4 bins in VBF SR

Control regions

▶ Yield in WW , top-quark and $Z \rightarrow \tau \tau$ CRs for $N_{jet} \leq 1$

► Yield in $Z \rightarrow \tau \tau$ CR for VBF $N_{jet} \ge 2$

▶BDT in top-quark CR

Process	$N_{\rm jet} = 0 {\rm ggF}$	$N_{\rm jet} = 1 {\rm ggF}$	$N_{\rm iet} \ge 2 \ {\rm VBF}$	
	5	0	Inclusive	BDT: $[0.86, 1.0]$
$H_{ m ggF}$	639 ± 110	285 ± 51	42 ± 16	6 ± 3
$H_{\rm VBF}$	7 ± 1	31 ± 2	28 ± 16	16 ± 6
WW	3016 ± 203	1053 ± 206	400 ± 60	11 ± 2
VV	333 ± 38	208 ± 32	70 ± 12	3 ± 1
$t\bar{t}/Wt$	588 ± 130	1397 ± 179	1270 ± 80	14 ± 2
Mis-Id	$447\pm~77$	234 ± 49	90 ± 30	6 ± 2
Z/γ^*	$27\pm~11$	$76\pm\ 24$	280 ± 40	4 ± 1
Total	5067 ± 80	3296 ± 61	2170 ± 50	60 ± 10
Observed	5089	3264	2164	60

Events / bin

$H \rightarrow WW^* \rightarrow ev\mu v @ 13TeV$

- All results extracted by the simultaneous fit of all the ggF and VBF SRs and CRs
- •One parameter of interest per production mode
- Cross-sections times branching
 fraction and signal strength
 1 σ cor

 $\sigma_{\text{ggF}} \cdot \mathcal{B}_{H \to WW^*} = 11.4^{+1.2}_{-1.1} (\text{stat.})^{+1.2}_{-1.1} (\text{theo syst.})^{+1.4}_{-1.3} (\text{exp syst.}) \text{ pb} = 11.4^{+2.2}_{-2.1} \text{ pb}$ $\sigma_{\text{VBF}} \cdot \mathcal{B}_{H \to WW^*} = 0.50^{+0.24}_{-0.22} (\text{stat.}) \pm 0.10 (\text{theo syst.})^{+0.12}_{-0.13} (\text{exp syst.}) \text{ pb} = 0.50^{+0.29}_{-0.28} \text{ pb}$

> $\mu_{ggF} = 1.10^{+0.10}_{-0.09} (\text{stat.})^{+0.13}_{-0.11} (\text{theo syst.})^{+0.14}_{-0.13} (\text{exp syst.}) = 1.10^{+0.21}_{-0.20}$ $\mu_{VBF} = 0.62^{+0.29}_{-0.27} (\text{stat.})^{+0.12}_{-0.13} (\text{theo syst.}) \pm 0.15 (\text{exp syst.}) = 0.62^{+0.36}_{-0.35}$

Systematic Uncertainties

ggF cross-section systematic dominated

(exp:12%, theo:10%)

statistic dominated (46%)

VBF cross-section

$\Delta \sigma = \mathcal{R}_{$	* [%]	$\Lambda_{\sigma_{\text{LLDE}}}$, \mathcal{B}_{LL}	* [%]	
$\Delta \sigma_{\mathrm{ggF}} : \mathcal{D}_{H \to W}$	$\frac{W^{*} [70]}{10}$	$\Delta O VBF \cdot D_{H \rightarrow V}$	$\frac{WW^{*} [70]}{46}$	
	10 7		40	
	6		$\frac{9}{21}$	
	10		19	
<u> </u>	5		13	
	<1		4	
	6		12	MC statistic
	5		5	1 1
ies	8		9	has a large
	4		6	contribution
	5		2	
	2		2	
	3		<1	
	6		9	
	3		3	
	18		57	
		Main th	eo. unc	
			ددعامد ر	on aaF in
		VBF phase		Jirggi ili
			hase sp	ace
				sening
		∻ WW r	nissina	higher order
	$\Delta \sigma_{\rm ggF} \cdot \mathcal{B}_{H \rightarrow W}$	$\begin{array}{c c} \Delta \sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*} \ [\%] & & 10 & & & & & & & & & & & & & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

C. Bertella

$H \rightarrow WW^* \rightarrow ev_{\mu}v @ 13TeV$

- Presented the ggF and VBF cross-sections times branching ratio in the $H \rightarrow WW^* \rightarrow e \nu \mu \nu$ using 36 fb⁻¹
- gqF measurement dominated by the systematic uncertainty
- VBF measurement will gain from including the 2017/18 data
- A lot a room of improvements for the run 2 legacy paper $\sigma_{VBF} \, [pb]$
- Challenge ahead
 - Data with very high pile-up
 - Reduce Mis-Id contamination and impact of its uncertainties
 - Control uncertainties on the SM WW
- ► H→WW*→ $e\nu\mu\nu$ plays an important role in the Higgs boson combination

ATLAS-CONF-2018-031

Back-up

Discriminant variable in ggF SRs

Z→TT background estimation

MC Samples

Monte Carlo generators used to model the signal and background processes with the corresponding product of cross section and the branching ratio for the Higgs boson production are 13 TeV

Process	Matrix element	PDF set	UEPS model	Prediction order	
	(alternative)		(alternative model)	for total cross-section	
ggF H	POWHEG-BOX v2 PDE4I HC15 NNLO [0]		Рутны 8 [1/]	$N^{3}I \cap OCD + NI \cap EW [24.25.26.27.28]$	
	NNLOPS [16,8,10]	1 D1 4 D10 13 MMDO [9]		$N \ LO \ QCD + NLO \ EW \ [24,23,20,27,26]$	
	$(MG5_AMC@NLO [46,47])$		(Herwig 7 [48])		
VBF H	Powheg-Box v2	PDF4LHC15 NLO	Pythia 8	NNLO $QCD + NLO EW [24,29,30,31]$	
			(Herwig 7)		
VH	Powheg-Box v2 $[49]$	PDF4LHC15 NLO	Pythia 8	NNLO QCD + NLO $EW[50,51,52]$	
$qq \rightarrow WW$	Sherpa $2.2.2$ $[32, 32, 33]$	NNPDF3.0NNLO [34]	Sherpa $2.2.2$ [35,36]	NLO [37]	
	(Powheg-Box $v2$,		$(\mathbf{H}_{ommin} + [49])$		
	$MG5_AMC@NLO)$		(1101 wig + + [40])		
$gg \rightarrow WW$	Sherpa 2.1.1 [37]	CT10 [53]	Sherpa 2.1	NLO [38]	
$WZ/V\gamma^*/ZZ$	Sherpa 2.1	CT10	Sherpa 2.1	NLO [37]	
$V\gamma$	Sherpa 2.2.2	NNPDF3.0NNLO	Sherpa 2.2.2	NLO [37]	
	$(MG5_AMC@NLO)$		(CSS variation [35,54])		
$tar{t}$	Powheg-Box v2 $[55]$	NNPDF3.0NLO	Pythia 8	NNLO+NNLL [56]	
	(Sherpa $2.2.1$)		(Herwig 7)		
Wt	Powheg-Box v1 $[57]$	CT10 [53]	Pythia 6.428 [58]	NLO [57]	
	(MG5_AMC@NLO)		(Herwig++)		
Z/γ^*	Sherpa 2.2.1	NNPDF3.0NNLO	Sherpa 2.2.1	NNLO [59,60]	

Event Selection

Category	$\left\ N_{\rm jet,(p_T>30~GeV)} = 0 \ {\rm ggF} \ \right \ N_{\rm jet,(p_T>30~GeV)} = 1 \ {\rm ggF}$	$N_{\rm jet,(p_T>30~GeV)} \ge 2~\rm VBF$		
Preselection	$ \begin{array}{ c c c c c c c c c c c c c$			
Background rejection	$ \begin{vmatrix} & & & N_{b\text{-jet},(p_{T}>2} \\ & \Delta \phi(\ell \ell, E_{T}^{\text{miss}}) > \pi/2 \\ & & p_{T}^{\ell \ell} > 30 \ GeV \end{vmatrix} \max \begin{pmatrix} m_{T}^{\ell} \end{pmatrix} > 50 \ GeV \\ & & m_{\tau \tau} < m_{\tau} <$	$\begin{array}{c} e_{0} _{\text{GeV}} = 0 \\ \\ e_{Z} - 25 GeV \end{array}$		
$H \rightarrow WW^* \rightarrow e\nu\mu\nu$	$ \begin{array}{c c} & m_{\ell\ell} < 55 ~GeV \\ & \Delta \phi_{\ell\ell} < 1.8 \end{array} \end{array} $	central jet veto outside lepton veto		
Discriminant variable BDT input variables	$\ $ $m_{ m T}$	$\begin{bmatrix} BDT \\ m_{jj}, \Delta y_{jj}, m_{\ell\ell}, \Delta \phi_{\ell\ell}, m_{\rm T}, \sum_{\ell} C_{\ell}, \sum_{\ell,j} m_{\ell j}, p_{\rm T}^{\rm tot} \end{bmatrix}$		

Mis-identified lepton background

W+jets (Mis-Id) evaluated from Z+jets data and corrected for expected differences with W+jets

Challenges:

|m| < 2.50

Mis-id extrapolation facto

0.6

0.5

0.4

0.3

0.2

0.1

Reduce W+jets background while using low p_T leptons

ATLAS H→WW*

 $\sqrt{s} = 13 \text{ TeV}, 36 \text{ fb}^{-1}$

Mis-id extrapolation facto

1(

Electron p₋ [GeV]

0.5

0.4

0.3

0.2

 10^{3}

Muon p₋ [GeV]

10²

Extrapolation factor

Stat. uncertainty

⊕ EW subtraction

Flavour composition

CLHCP2018 -21-December-2018

10²

VBF identification

Selection of VBF Higgs boson candidate

- Veto presence of extra jets between the two leading jets
- Central Higgs boson decay
- Veto Z mass window
- Properties of H→WW*→evµv decay and VBF topology are used in a boosted decision tree
 - ► H→WW*→eνµν: m_{II}, $\Delta \phi_{II}$, m_T
 - •VBF topology: m_{jj} , Δy_{jj} , $\eta_{centrality}$, $\sum M_{lj}$, p_T^{tot}

Highest ranked variables: m_{jj} and Δy_{jj} ,

ggF channels

VBF channels

 $H \rightarrow WW^* \rightarrow ev\mu v$ candidate and two jets with VBF topology

$H \rightarrow WW^* \rightarrow ev\mu v @ 13TeV$

CMS Results

 $\hat{\mu} = 1.28^{+0.18}_{-0.17} = 1.28 \pm 0.10(\text{stat})^{+0.11}_{-0.11}(\text{syst})^{+0.10}_{-0.07}(\text{theo.})$

Main theoretical uncertainties are ggF cross section and jet bin migration

 Main experimental systematics come from the background rates, luminosity, and lepton identification efficiencies

C. Bertella