Combined measurements of Higgs boson production and decay using pp collisions at 13 TeV with the ATLAS experiment

CLHCP 2018

Zirui Wang (Shanghai Jiao Tong Univ./ Univ. of Michigan)

On behalf of the ATLAS Collaboration

21 Jan. 2018, Wuhan, China

Outline

- Introduction
- Higgs combined property measurement results:
 - Global signal strength measurement
 - Production cross-section measurement
 - Measurement of coupling parameters in the "kappa" framework
- Summary

SM Higgs Production at LHC

Following the Higgs Boson with mass ~ 125 GeV discovered in 2012, more data (full run 2 ~140 /fb) pushes Higgs physics from searching to precisely measuring properties.

XS in pb	13 TeV	8 TeV	σ13/σ8
ggF	48.5	21.4	2.3
VBF	3.78	1.60	2.4
WH	1.37	0.70	2.0
ZH	0.88	0.42	2.1
bbH	0.49	0.20	2.4
ttH	0.51	0.13	3.8
tH	0.09	0.02	3.9

There is **an increase by a factor of 2-4** in production cross sections.

SM Higgs Decay BR

- H→ZZ*→4I (I=e,μ) and H→γγ: low BR but clean signature. The excellent mass resolution is crucial for the Higgs boson mass measurement.
- $H \rightarrow WW^*$: high BR but low mass resolution. (See Claudia's talk)
- H→bb and H→ττ : high BR, low S/B and low mass resolution at LHC. (See Antonio, Zhijun and Yanhui's talk)

Input channels/analysis

ATLAS-CONF-2018-031

Pro	duction	gluon fusion g g t t H g coccoccoccoccoccoccoccoccoccoccoccoccoc	$\begin{array}{c} q \\ q \\ \hline W, Z \\ W, Z \\ W, Z \\ \end{array} \begin{array}{c} H \\ H \\ q \\ \hline \end{array} \begin{array}{c} q \\ H \\ q \\ \hline \end{array} \begin{array}{c} q \\ H \\ \hline \end{array} \begin{array}{c} q \\ q \\ \hline \end{array}$	associated prod. with W/Z W,Z W,Z H	associated prod. with tt g g t H g t t t
	WW and ZZ pairs	80/fb	80/fb	80/fb	80/fb
есау		80/fb	80/fb	80/fb	80/fb
Ď	<u>H</u>	36.1/fb	36.1/fb		36.1/fb
	н	36.1/fb	36.1/fb		36.1/fb
	Б			36.1 /fb	36.1/fb
	н	80/fb	80/fb		

- Measurement is based on combining
 - 79.8/fb: $H \rightarrow ZZ$, $H \rightarrow \gamma\gamma$, and $H \rightarrow \mu\mu$
 - 36.1/fb: H → WW, H → ττ and H → bb (ttH, H→WW, ττ come from the same input analysis, see Zhi's talk)

Global signal strength

Inclusive signal strength μ : $\mu = \frac{\sigma \times B}{(\sigma \times B)_{SM}}$

 $\mu = 1.13^{+0.09}_{-0.08} = 1.13^{+0.05}_{-0.05} (\text{stat.})^{+0.05}_{-0.05} (\text{exp.})^{+0.05}_{-0.04} (\text{sig. th.})^{+0.03}_{-0.03} (\text{bkg. th.})$

compatibility with SM: 13%

Production cross section measurement

 ATLAS has observed VBF production mode independently (6.5σ). (see Yaquan's talk)

Significance obs. (exp.)	ATLAS+CMS Run-1	ATLAS(36.1 – 79.8 /fb)
VBF	5.4(4.6)	6.5(5.3)
VH	3.5(4.2)	5.3(4.8)
ttH	4.4(2.0)	5.8(5.3)

• 5-D compatibility with SM: 51%.

- The ggF and VBF are anticorrelated at 14% level.
- The ggF-VBF contour shows the measurement is consistent with SM within 68% CL.

Production cross section measurement CLHCP 2018 - Zirui Wang 8

 $\sigma \times B$ normalized to SM value

Cross-sections times branching fraction for production in each relevant decay modes

Ratios of cross sections and of branching fractions are measured using as reference the rate of the gg \rightarrow H \rightarrow ZZ \rightarrow 4l process:

$$\sigma_i \cdot \mathbf{B}_f = \sigma_{\mathrm{ggF}} \cdot \mathbf{B}_{4\ell} \cdot \left(\frac{\sigma_i}{\sigma_{\mathrm{ggF}}}\right) \cdot \left(\frac{\mathbf{B}_f}{\mathbf{B}_{4\ell}}\right)$$

• 9-D compatibility with SM: 83%.

"kappa" framework

- With known Higgs boson mass, the SM Higgs sector is fixed.
- Use the LO coupling modifier to probe for deviations from the SM.
- Introduce one scale factor κ per SM particle with observable "Higgs coupling" at the LHC: κW, κZ, κt, κb, κτ, κμ, κγ, κg, κH
- Eg:

• Can handle other production and decay vertices in a similar way (much simpler in most cases)

κ_F vs. κ_V and κ_g vs. κ_γ model

 Model 1. Assume uniform coupling modifiers for all weak vector bosons (κ_V) and all fermions (κ_F).

2D compatibility

Best fit

- 68% CL

---- 95% CL ★ SM

2

 $\kappa_{\rm V}$

with SM: 31%

1.2

 $\kappa_{\rm F} = 1.05^{+0.09}_{-0.09}$

 $\kappa_{\rm V} = 1.06^{+0.04}_{-0.04}$

^y ^{2.5} **ATLAS** Preliminary

1.5

0.5

 \sqrt{s} = 13 TeV, 36.1 - 79.8 fb⁻¹

 $m_H = 125.09 \text{ GeV}, |y_u| < 2.5$

Combined $-H \rightarrow \gamma \gamma$

0.2

 $H \rightarrow WW$

 $H \rightarrow \tau \tau$

.6

0.8

• Model 2. Assign coupling modifier to $gg \rightarrow H/H \rightarrow gg (\kappa_g)$ and $H \rightarrow \gamma\gamma (\kappa_{\gamma})$. All the other couplings are fixed to SM.

• 2D compatibility with SM: 70%

$$\kappa_{g} = 1.05^{+0.06}_{-0.06}$$

 $\kappa_{\gamma} = 1.00^{+0.06}_{-0.06}$

• Model 3. Assuming BSM contribution in the total width, then:

$$\kappa_{g} = 1.05^{+0.06}_{-0.06}$$

 $\kappa_{\gamma} = 1.00^{+0.07}_{-0.06}$
 $B_{BSM} < 0.13 @ 95\% CL$

Parameterization assuming SM structure CLHCP 2018 - Zirui Wang 11

Parameter	Result
κ_Z	$1.07^{+0.11}_{-0.10}$
κ_W	1.04 ± 0.10
κ_b	$1.00^{+0.24}_{-0.22}$
κ_t	$1.03_{-0.11}^{+0.12}$
$\kappa_{ au}$	$1.04_{-0.16}^{+0.17}$
κ_{μ}	< 1.63 at 95% CL.

6D compatibility with SM: 79%

- Model 4. All couplings are assumed to positive. B_{BSM} is assumed to be zero. $H \rightarrow \mu\mu$ is included in this parameterization.
- Couplings are in an excellent agreement with the Standard Model prediction over a range covering 3 orders of magnitude in particle mass.

Parameter	Definition in terms of κ modifiers	Result
κ_{gZ}	$\kappa_g \kappa_Z / \kappa_H$	1.06 ± 0.07
λ_{tg}	κ_t/κ_g	$1.09\substack{+0.14 \\ -0.14}$
λ_{Zg}	κ_Z/κ_g	$1.06^{+0.14}_{-0.13}$
λ_{WZ}	κ_W/κ_Z	$0.99\substack{+0.09 \\ -0.08}$
$\lambda_{\gamma Z}$	$\kappa_{\gamma}/\kappa_{Z}$	$0.95\substack{+0.08 \\ -0.07}$
$\lambda_{ au Z}$	$\kappa_{ au}/\kappa_Z$	0.95 ± 0.13
λ_{bZ}	κ_b/κ_Z	$0.91\substack{+0.17 \\ -0.16}$

7D compatibility with SM: 86%

- Model 5. The parameterization requires no assumption on the total width of the Higgs boson. All parameters are assumed to be positive.
- Unprecedented precision reached for all modifiers comparing to the previous results.
- The gluon-gluon fusion and Higgs boson production in association with top quarks is sensitive to test for new physics in the ggF loop.

Generic "kappa" model

- Model 6. No BSM contributions to the total width are considered. 7D compatibility with SM: 87%.
- Model 7. BSM contributions to the total width are included, constrained by assuming $B_{BSM} \ge 0$ and $\kappa_{Z,W} \le 1$.
- *B_{BSM}* <0.26 @ 95% CL

Summary

- Measurement of Higgs boson production and decay performed based on
- 79.8/fb H \rightarrow ZZ, H \rightarrow $\gamma\gamma$, and H $\rightarrow \mu\mu$
- 36.1/fb H \rightarrow WW, H \rightarrow $\tau\tau$ and H \rightarrow bb
- Combined signal strength:

 $\mu = 1.13^{+0.09}_{-0.08} = 1.13^{+0.05}_{-0.05}(stat.)^{+0.05}_{-0.05}(exp.)^{+0.05}_{-0.04}(sig. th.)^{+0.03}_{-0.03}(bkg. th.)$

• Production mode cross sections, ratios of production mode cross sections measurements are performed. **The significance of VBF, VH and ttH production mode are measured to be 6.5σ, 5.3σ and 5.8σ, respectively.**

• Data also interpreted using κ framework. **Unprecedented precision**

reached for many of the parameterizations.

- In all cases, **compatibility between data and SM is within 2 standard deviation.** No deviation from SM captured.
- More channels and more integrated luminosity will be added in the following combination analysis.

CLHCP 2018 - Zirui Wang 15

Thanks

CLHCP 2018 - Zirui Wang 16

Backup

Large Hadron Collider at CERN

The Higgs boson in the SM

• Parametrisation:

			Effective	
	Loops	Interference	scaling factor	Resolved scaling factor
Production				
$\sigma(ggH)$	\checkmark	g-t	κ_{g}^{2}	$1.04\kappa_{\rm t}^2 + 0.002\kappa_{\rm b}^2 - 0.038\kappa_{\rm t}\kappa_{\rm b}$
$\sigma(\text{VBF})$		—	U	$0.73\kappa_{\rm W}^2 + 0.27\kappa_{\rm Z}^2$
$\sigma(WH)$	_	_		κ_{W}^{2}
$\sigma(qq/qg \rightarrow ZH)$	_	_		κ_Z^2
$\sigma(\text{gg} \rightarrow \text{ZH})$	\checkmark	Z-t		$2.46\kappa_Z^2 + 0.47\kappa_t^2 - 1.94\kappa_Z\kappa_t$
$\sigma(ttH)$		_		$\kappa_{\rm t}^2$
$\sigma(\text{gb} \rightarrow \text{WtH})$	0	W-t		$2.91\kappa_{t}^{2} + 2.31\kappa_{W}^{2} - 4.22\kappa_{t}\kappa_{W}$
$\sigma(\mathrm{qb} ightarrow \mathrm{tHq})$		W-t		$2.63\kappa_t^2 + 3.58\kappa_W^2 - 5.21\kappa_t\kappa_W$
$\sigma(bbH)$				$\kappa_{\rm b}^2$
Partial decay width				
Γ^{ZZ}	_	_		κ_Z^2
Γ^{WW}	_	_		κ_W^2 g
$\Gamma^{\gamma\gamma}$	\checkmark	W-t	κ_{γ}^2	$1.59\kappa_{W}^{2} + 0.07\kappa_{t}^{2} - 0.67\kappa_{W}\kappa_{t}$
$\Gamma^{\tau\tau}$	_	_	,	κ_{τ}^2
Γ^{bb}	_	—		$\kappa_{\rm b}^2$
$\Gamma^{\mu\mu}$	_	—		κ_{μ}^2
Total width for $\mathcal{B}_{BSM} = 0$				
Post.				$0.58\kappa_{\rm b}^2 + 0.22\kappa_{\rm W}^2 + 0.08\kappa_{\rm c}^2 +$
Γ _H	1	—	$\kappa_{\rm H}^2$	$+0.06\kappa_{T}^{2}+0.026\kappa_{T}^{2}+0.029\kappa_{c}^{2}+$
00165552			п	$+0.0023\kappa_{\alpha}^{2}+0.0015\kappa_{z\alpha}^{2}+$
				$+0.00025\kappa^{2}+0.00022\kappa^{2}$

"kappa" model performed

Models	POIs	comment
1. Modifications to fermion and gauge bosons couplings	кϝ, кγ	No BSM contribution κ _F , κ _V > 0
2/3. Modifications to effective photons and gluon couplings w/ or w/o BSM decays	к _g , к _γ , (B _{BSM})	κg, κγ > 0BBSM within (0,0.5)
4. Parameterization assuming SM structure of the loops and no BSM decays	к _μ , к _W , к _Z ,к _t , к _τ , к _b	No BSM contribution All POIs are positive H $\rightarrow \mu\mu$ included
5. Parameterization using ratios of coupling modifiers	κ _{gZ} , λ_{Zg} , λ_{tg} , λ_{WZ} , $\lambda_{\gamma Z}$, $\lambda_{\tau Z}$, λ_{bZ}	No BSM contribution No assumption on the total width All POIs are positive
6/7 Generic parameterization w/ or w/o BSM decays	к _g , к _γ , к _W , к _Z ,к _t , к _t , к _b , (B _{BSM})	Only allow κ_t to go both positive and negative B _{BSM} within (0,0.5)

Uncertainty source	$\frac{\Delta\mu}{\mu}$ [%]
Statistical uncertainties	4.5
Systematic uncertainties (excl. MC stat.)	6.1
Theory uncertainties	4.8
Signal	4.3
Background	2.3
Experimental uncertainties	4.0
Luminosity	2.1
Fake leptons	1.2
Jets, $E_{\mathrm{T}}^{\mathrm{miss}}$	1.3
Flavour tagging	0.9
Background modeling	1.2
Electrons, photons	2.2
Muons	0.3
au-lepton	0.4
Other	1.5
MC stat. uncertainties	1.5

Significance obs. (exp.)	ATLAS+CMS Run-1	ATLAS(36.1 – 79.8 /fb)
VBF	5.4(4.6)	6.5(5.3)
VH	3.5(4.2)	5.3(4.8)
ttH	4.4(2.0)	5.8(5.3)

• Run 2 $H \rightarrow \gamma \gamma$ mass resolution: 1.4-2.1 GeV • Run 2 $H \rightarrow ZZ^* \rightarrow 4I$ mass resolution: 1.6-2.4 GeV