

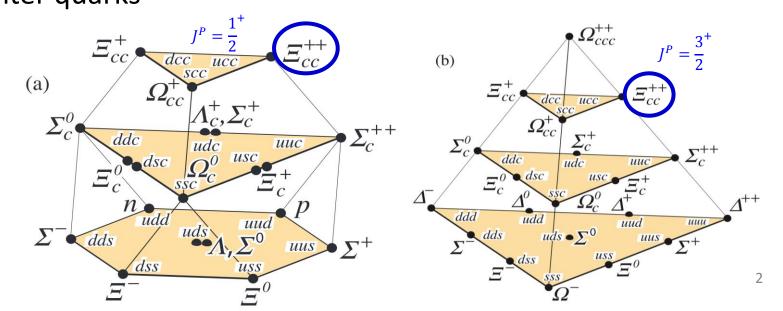
First observation of the doubly charmed baryon decay $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$

Menglin Xu

For the LHCb collaboration

Central China Normal University

The 4th China Physics collaboration, 17 Dec 2018

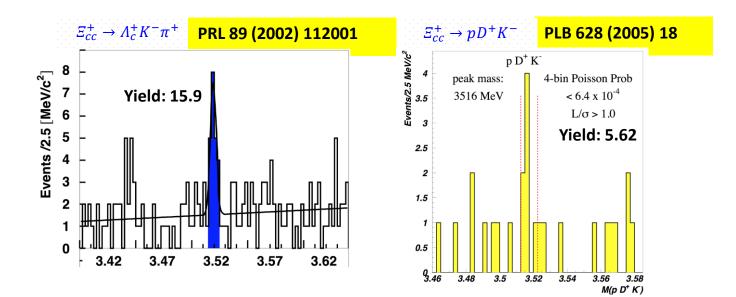

Success of the constituent quark model

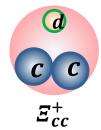
- LHCb
- Two SU(4) baryon 20-plets with $J^P = \frac{1}{2}^+$ and $J^P = \frac{3}{2}^+$, each contains

a SU(3) triplet with two charm quarks: $\Xi_{cc}^+(ccd)$, $\Xi_{cc}^{++}(ccu)$, $\Omega_{cc}^+(ccs)$

✓
$$J^P = \frac{3}{2}^+$$
 states expected to decay to $\frac{1}{2}^+$ states via strong/electromagnetic interaction

✓ $J^P = \frac{1}{2}^+$ states decay weakly with a c quark transformed to lighter quarks


Studies of Ξ_{cc} by SELEX experiment


- LHCb THCp
- SELEX (Fermilab E781) claimed observation of $\mathcal{Z}_{cc}^+(ccd)$ in $\mathcal{Z}_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$ and $\mathcal{Z}_{cc}^+ \rightarrow pD^+ K^-$ decays

✓ <u>Short lifetime</u>: $\tau(\Xi_{cc}^+) < 33$ fs @90% CL, but not zero

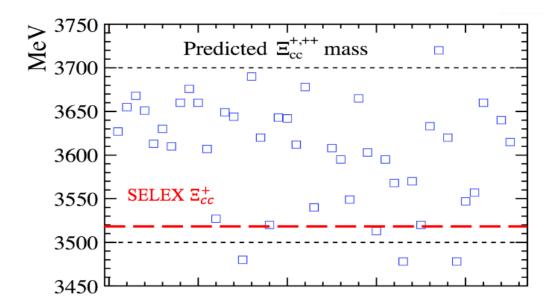
✓ Large production:
$$R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} \sim 20\%$$

✓ Mass (combined): 3518.7 ± 1.7 MeV

Studies of Ξ_{cc} by SELEX experiment

LHCb THCp

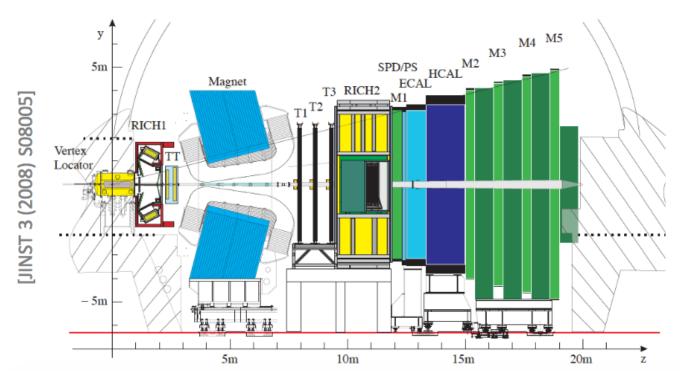
d


 Ξ_{cc}^+

• SELEX (Fermilab E781) claimed observation of $\mathcal{Z}_{cc}^+(ccd)$ in $\mathcal{Z}_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $\mathcal{Z}_{cc}^+ \to pD^+ K^-$ decays

✓ <u>Short lifetime</u>: $\tau(\Xi_{cc}^+) < 33$ fs @90% CL, but not zero

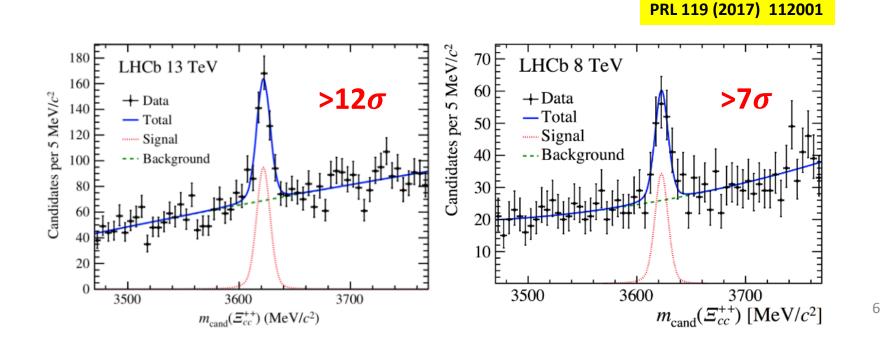
✓ Large production:
$$R = \frac{\sigma(\Xi_{cc}^+) \times BF(\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+)}{\sigma(\Lambda_c^+)} \sim 20\%$$


- ✓ Mass (combined): 3518.7 ± 1.7 MeV
- ✓ No confirmation from other experiments

LHCb detector

LHCb THCp

- LHCb is a forward spectrometer : 2 < η < 5
- Dedicated to precision study of b, c hadrons
- Momentum resolution: 0.5% at 5 GeV, 1.0% at 200 GeV
- Excellent track and vertex reconstruction
- Good PID separation

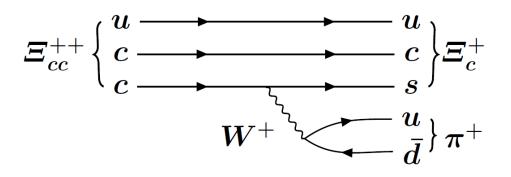


First Observation of Ξ_{cc}^{++}

- $\Lambda_c^+ K^- \pi^+ \pi^+$ identified as the most promising channe
- First observed by LHCb
 - ✓ Ξ_{cc}^{++} mass measured: 3621.40 ± 0.72(stat) ± 0.27(syst) ± 0.14(Λ_c^+) MeV/ c^2

CPC 42 (2018) 051001

✓ Decaying only via weak interaction, mass peak remains after lifetime cut, $t > 5\sigma_t$

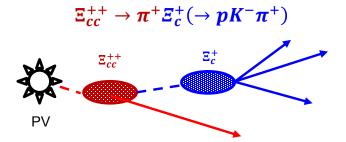


 Ξ_{cc}^{++}

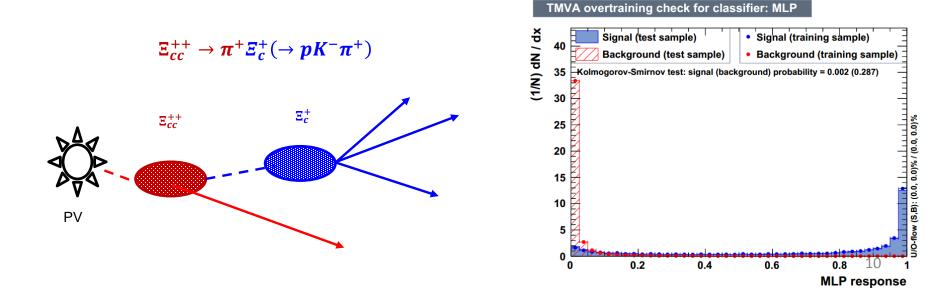
- $\mathcal{Z}_{cc}^{++} \to \mathcal{Z}_{c}^{+} \pi^{+}$ expected to have large BR, one of the best channels to confirm \mathcal{Z}_{cc}^{++} (2018) 051001
 - ✓ $BR(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) \sim \mathcal{O}(1\%)$ Prediction ✓ $BR(\Lambda_{c}^{+} \to p^{+}K^{-}\pi^{+}) - (6.23 \pm 0.33\%)$ Measurement ✓ $BR(\Xi_{c}^{+} \to p^{+}K^{-}\pi^{+}) \sim (2\%)$ Prediction ✓ Fewer tracks (4 tracks) → higher efficiency
- Data sample: LHCb runII at $\sqrt{s} = 13$ TeV, ~ 1.7 fb⁻¹
 - ✓ Dedicated exclusive trigger ensuring high efficiency, full event reconstruction at trigger level

- Blinded analysis
- Event selection of $\Xi_c^+\pi^+$ candidates, 2016 data
- Multivariate selector to suppress combinatorial background

✓ Simulation as signal, data upper sideband as background


- Open signal window
 - \checkmark > 3 σ signal: mass measurement, ratio of branching fraction
 - ✓ Otherwise: upper limit setting

- Ξ_{cc} cross-section much smaller($^{\sim} \times 10^{-5}$) in pp collisions, expecting large hadronic backgrounds
- $\Xi_c^+ \rightarrow pK^-\pi^+$: $\checkmark p, K^-, \pi^+$ tracks: particle ID, not produced from primary vertex $\checkmark \Xi_c^+$: good vertex quality, separated from primary vertices $\checkmark p, K^-, \pi^+$ and Ξ_c^+ have large p_T


Strongly suppressing the backgrounds

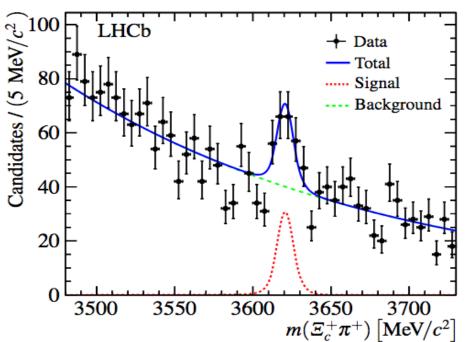
As a follow-up analysis of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$, $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$ has similar selection cuts as in previous analysis.

Machine learning

- LHCb THCp
- Ξ_{c}^{+} combined with PID-selected π^{+} tracks to form Ξ_{cc}^{++} candidates
- Multivariate selector is used to further suppress the backgrounds
 - \checkmark Decay fit quality (Vertex fitting quality)
 - $\checkmark \Xi_{cc}^{++}$ vertex separation from PV
 - ✓ Kinematics of final states
- More sensitive to **long lived** particles

Signal yield

- Significant peak structure around **3620** MeV/c² observed
- Studying Ξ_c^+ mass corrected mass:


 $M_{cand}(\Xi_{cc}^{++}) = M(\Xi_c^+\pi^+) - M(\Xi_c^+) + M_{PDG}(\Xi_c^+)$

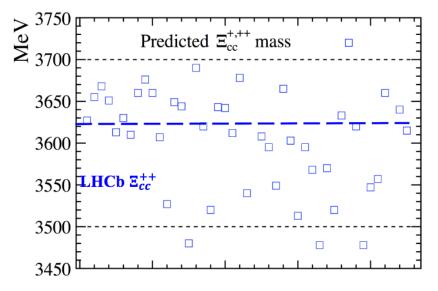
✓ Signal yields: 91 ± 20

✓ Resolution: 6.45 ± 0.1 MeV, consistent with simulated value

✓ Local significance $\sim 6\sigma$

PRL 121 (2018) 162002

Mass measurement

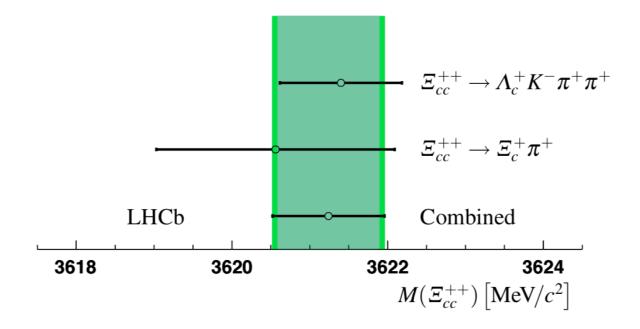


- Systematic uncertainties studied
- The mass is measured to be

$m(\Xi_{cc}^{++}) = 3620.56 \pm 1.45 \text{ (stat)} \pm 0.49 \text{ (syst)} \text{ MeV/c}^2$

Value consistent with most of theoretical calculations

Source	Value(MeV/ c^2)
Momentum-scale calibration	0.38
Ξ_c^+ bias due to selections	0.01
Ξ_{cc}^{++} bias due to selections	0.08
Ξ_{cc}^{++} unknown lifetime	0.03
FSR	0.03
Uncertainty of Ξ_c^+ mass	0.30
Mass fit model	0.05
Total	0.49
	1



- Consistent with $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ result: 3621.40 ± 0.72 (*stat*) ± 0.27 (syst) ± 0.14 (Λ_c^+) MeV/c²
- Combined result: 3621.25 ± 0.65 (stat) ± 0.31 (syst) MeV/c²

✓ Using BLUE method EPJC 74 (2014) 3004

 ✓ Momentum scale and lifetime systematic uncertainties are 100% correlated between two channels

✓ Other systematic uncertainties are uncorrelated

• The ratio of total BR fraction (\mathcal{R}):

No direct branching fraction measurement of $\Xi_c^+ \rightarrow p K^- \pi^+$ from experiments.

$$\begin{aligned} \mathcal{R} &= \frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}(\to p^{+}K^{-}\pi^{+})\pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+}(\to p^{+}K^{-}\pi^{+})K^{-}\pi^{+}\pi^{+})} \\ &= \frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} \times \frac{\mathcal{B}(\Xi_{c}^{+} \to p^{+}K^{-}\pi^{+})}{\mathcal{B}(\Lambda_{c}^{+} \to p^{+}K^{-}\pi^{+})} \\ &= \frac{N(\Xi_{c}^{+}\pi^{+})}{N(\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} \cdot \frac{\varepsilon(\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})}{\varepsilon(\Xi_{c}^{+}\pi^{+})} \end{aligned}$$

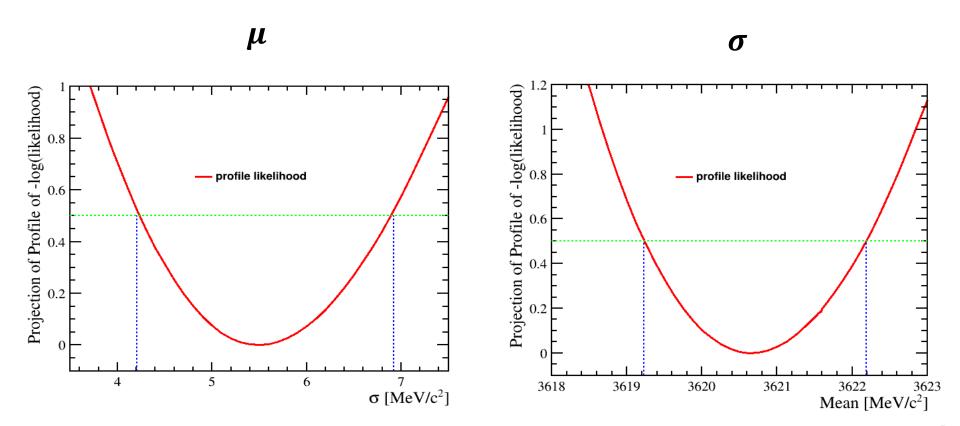
• Measure the signal yields and efficiency for each channel: $\mathcal{R} = 0.035 \pm 0.009 (stat) \pm 0.003 (syst)$ Consistent with prediction CPC 42 (2018) 051001

- $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$ is observed in the 2016 data sample
 - ✓ Signal yield: 91 ± 20
 - ✓ Significance is about 6σ
- The measured mass result is:

3620.56 ± 1.45 (stat) ± 0.49 (syst) MeV/c² ✓ Good agreement with $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$ result 3621.4 ± 0.72 (stat) ± 0.27 (syst) MeV/c²

The measured relative BR fraction is :

$$\mathcal{R} \equiv \frac{B(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+)}{B(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)} \times \frac{B(\Xi_c^+ \to p^+ K^- \pi^+)}{B(\Lambda_c^+ \to p^+ K^- \pi^+)}$$


 $= 0.035 \pm 0.009 (stat) \pm 0.003 (syst)$

• Published: PRL 121 (2018) 162002

Back Up

$\square m(\Xi_{cc}^{++}) = 3620.66 \pm 1.45 \text{ (stat) MeV/c}^2$

Source	Mass $[MeV/c^2]$	$\mathcal{R}(\mathcal{B})$ [%]
Momentum calibration	0.38	
Selection bias correction	0.10	
Fit model	0.05	5.2
Relative efficiency		6.5
Simulation modelling		1.2
Selection		0.7
Sum in quadrature	0.40	8.5

With limited statistics of both signal and control samples, the dominated uncertainty is statistical uncertainty (1.5 MeV, 0.009)