Performance of the hadronic recoil in precision W boson measurements with low pileup dataset

Mengran Li on behalf of the ATLAS collaboration

Dec. 20th 2018

Institute of High Energy Physics Chinese Academy of Sciences

Outline

- Status and future of W Mass Measurements
- Introduction
- Dataset
- Hadronic recoil reconstruction
- Motivation for selections on particle flow object entering recoil
- Performance of recoil with different kinematic cuts
- Summary

Status and future of W boson mass measurements

Motivation for W boson transverse momenta measurement

W/Z p_T ratio was used to model p_T^W in W boson mass measurement

Precision measurements of p_T^W would be sensible to new physics!

W/Z p_T ratio is not well modelled at high order prediction.

20 December 2018

Transverse momenta of W and Z boson

 u_T is the sum of energy of the recoil in the transverse plane \vec{p}_T^W is estimated from $-\vec{u}_T$ $\vec{p}_T^{\nu} = -(\vec{p}_T^l + \vec{u}_T)$ A good understanding of the $-\vec{u}_T$ is needed to reconstruct P_T^{v} ! p_{v} $W \rightarrow \ell v$ p_x $p_T(W)$

Pileup and precision measurement on W boson

A low pileup run is very important for W precision measurement.

Pileup degrades the resolution of recoil measurement

20 December 2018

Dataset

Hadronic recoil reconstruction

Hadronic recoil, $\vec{u}_T = \sum_i \vec{E}_{T,i}^{PFOS}$ is reconstructed using particle flow objects (PFOs) Charged: tracks associated to the primary vertex Neutral: clusters in electromagnetic calorimeter PFO HCAL Clusters neutral detector hadron ECA photon Clusters Tracks charged particle-flow HCAL hadrons

Definition for u_{\perp}

- u_{\perp} is the projection of the recoil perpendicular to the direction of the Z boson.
- u_⊥ has an expected value of 0, as the recoil is by definition back-to-back with respect to the Z boson direction.
- The standard deviation of the u_{\perp} distribution defines the resolution of the recoil.

Motivation for PFO selection optimization

- Increasing the p_T threshold would allow for better rejection of low p_T backgrounds, such as pileup or underlying event.
- The granularity of the calorimeter is coarser on the forward regions. Scanning on the $|\eta|$ acceptance may allow for better optimization.
- A scan is performed on the p_T and $|\eta|$ of the PFOs entering the recoil definition in order to achieve the best possible resolution.

Comparison of $\sum E_T - u_T$

 $\sum E_T - u_T$ ($\sum E_T$ sums up E_T of all PFOs except signal lepton), is sensitive to the activity of the underlying event, which degrades recoil resolution.

20 December 2018

Comparisons of u_T

 $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ are comparable in each $\Sigma E_T - u_T$ bins.

20 December 2018

Comparisons of u_{\perp}

Since $Z \to ee$ and $Z \to \mu\mu$ have the same u_T and u_{\perp} distribution, we combined $Z \to ee$ and $Z \to \mu\mu$ channels in the following study.

20 December 2018

Width of u_{\perp} grows with $\sum E_T - u_T$

The width of u_{\perp} grows with $\sum E_T - u_T$. It is sensitive to the activity of the underlying event, which degrades recoil resolution.

Resolutions with different η cuts on PFOs

The best resolution is achieved with the full η region.

20 December 2018

Recoil relative resolution: $\frac{\sigma(u_{\perp})}{\langle u_T \rangle}$

The best resolution of the hadronic recoil is achieved with $p_T^{PFOS} > 0$ GeV, and $|\eta^{PFOS}| < 4.9$, which is the full phase space.

Data and simulation comparison of the recoil resolution

Recoil resolutions are the same between data and MC expectations

20 December 2018

Summary

- The p_T and η thresholds on PFOs contained in hadronic recoil definition have been optimised within $p_{T,thres} \in [0, 2]$ GeV $\otimes \eta_{thres} \in [2.5, 4.9]$. The best resolution of hadronic recoil is achieved with full phase space. ($p_{T,thres} = 0$ GeV , $\eta_{thres} = 4.9$).
- These results will be an important component in the next W boson transverse momenta and W boson mass measurements to be published.

Backup

20 December 2018

Backup

Backup: Absolute resolutions of u_{\perp}

Recoil resolution $\sqrt{s} = 5 \text{ TeV}$		
$\sum \bar{E_T}$ range	$\sigma_{\!\!\perp}(Z \to ee)$	$\sigma_{\!\!\perp}(Z\to\mu\mu)$
(0, 30) GeV	3.05 ± 0.04	3.08 ± 0.03
(30, 40) GeV	3.85 ± 0.05	3.86 ± 0.04
(40, 50) GeV	4.26 ± 0.05	4.29 ± 0.04
(50, 60) GeV	4.70 ± 0.05	4.71 ± 0.05
(60, 70) GeV	5.01 ± 0.06	4.93 ± 0.05
(70, 80) GeV	5.21 ± 0.06	5.23 ± 0.05
(80, 90) GeV	5.59 ± 0.07	5.53 ± 0.06
(90, 110) GeV	6.02 ± 0.06	5.96 ± 0.05
(110, 130) GeV	6.34 ± 0.08	6.51 ± 0.06
(130, 180) GeV	7.19 ± 0.08	7.09 ± 0.07
(180, 1000) GeV	8.45 ± 0.14	8.38 ± 0.13

Recoil resolution $\sqrt{s} = 13$ TeV			
$\sum \bar{E_T}$ range	$\sigma_{\perp}(Z \to ee)$	$\sigma_{\perp}(Z \to \mu \mu)$	
(0, 40) GeV	3.71 ± 0.05	3.75 ± 0.04	
(40, 60) GeV	4.82 ± 0.05	4.92 ± 0.04	
(60, 80) GeV	5.63 ± 0.05	5.62 ± 0.04	
(80, 100) GeV	6.16 ± 0.05	6.13 ± 0.05	
(100, 120) GeV	6.58 ± 0.06	6.65 ± 0.05	
(120, 140) GeV	7.10 ± 0.07	7.18 ± 0.06	
(140, 160) GeV	7.58 ± 0.08	7.68 ± 0.07	
(160, 190) GeV	8.05 ± 0.08	8.14 ± 0.07	
(190, 240) GeV	8.90 ± 0.09	8.75 ± 0.07	
(240, 1000) GeV	10.7 ± 0.1	10.5 ± 0.1	

20 December 2018

Backup

20 December 2018

Mengran

22

Resolution maps with 5TeV data $30 \text{ GeV} < \sum \text{E}_{-} \cdot \text{u}_{\text{T}} < 40 \text{ GeV}$ $40 \text{ GeV} < \sum \text{E}_{-} \cdot \text{u}_{\text{T}} < 50 \text{ GeV}$ 0.385 PFO In threshold 0.4 0.38 PFO In thres 4.5 0.395 0.375 0.39 0.37 0.385 0.365

1000

1500

 $\sum E_- \cdot u_T < 30 \text{ GeV}$

500

PFO Inl threshold 4 7 8

3.5

2.5

0

1000

 $50 \text{ GeV} < \sum \text{E}_{-} \cdot \text{u}_{\text{T}} < 60 \text{ GeV}$

0.405

0.395

0.39

0.385

0.38

0.375

0.37

0.365

0.415

0.41

0.4

0.405

0.395

0.39

0.385

0.38

0.375

2000

2000

0.4

0.36

0.355

0.35

2000

3.5

2.5

PFO Inl thre 4.5

3.5

0

500

 $80 \text{ GeV} < \sum E_{-} \cdot u_{T} < 90 \text{ GeV}$

500

1000

1500

1500

PFO p_ threshold [MeV]

PFO p_ threshold [MeV]

0

500

1000

1500

PFO p_ threshold [MeV]

2000

Resolution maps with 13TeV data

 $\sum E_- u_T < 40 \text{ GeV}$

20 December 2018