

Measurement of the $\Upsilon(nS)$ production cross-section at $\sqrt{s}=13$ TeV at LHCb

Jiajia Qin(秦佳佳)

University of Chinese Academy of Sciences

On behalf of the LHCb collaboration

CLHCP 2018
December 19-22 @CCNU

12/20/2018 CLHCP

Outline

- >Introduction
- >LHCb detector
- Analysis strategy
- **≻**Results
- **>**Summary

Introduction

- Heavy quarkonia production probing QCD.
- Sensitive to PDFs and fragmentation functions: non perturbative.
- > Test models:
 - Colour evaporation model (CEM)
 - Colour-singlet model (CSM)
 - Non-relativistic QCD (NRQCD) Eur. Phys. J. C72 (2012) 2025

Introduction

➤ The ratios, more precise, more constraints on theoretical models.

JHEP 11 (2015) 103

- NRQCD underestimate the ratio with $p_{
 m T}$
- Different trends with y for CO mechanism only and data
- ➤ LHCb is a *b/c* factory with special acceptance, ideal place to study.

LHCb detector

- ➤ Aiming for precision measurements in *b*, *c* flavor sectors.
- \triangleright Cover forward region 2 < η < 5.

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

Analysis strategy

- \triangleright With the 2015 pp collision data (277±11 pb⁻¹).
- Measure the production cross-sections of $\Upsilon(nS)$ (n=1,2,3) as a function of $p_{\rm T}$ (0 < $p_{\rm T}$ < 30 GeV/c) and y (2.0< y <4.5).
- > Double differential cross-sections:

$$\frac{\mathrm{d}^2 \sigma_{\Upsilon}}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} y} \times \mathcal{B}(\Upsilon(nS) \to \mu^+ \mu^-) = \frac{N(\Upsilon(nS) \to \mu^+ \mu^-)}{\mathcal{L} \cdot \varepsilon \cdot \Delta y \cdot \Delta p_{\mathrm{T}}}$$

- N: number of signals in a given bin.
- *L:* integrated luminosity.
- ε : total efficiency in a given bin.
- Δy , $\Delta p_{\rm T}$: bin width (Δy =0.5, $\Delta p_{\rm T}$ =1 GeV/c).
- ➤ Measure the cross-section ratios between different states and between different energies.

Signal yields and efficiency

Signal yields:

JHEP 07(2018) 134

Unbinned maximum likelihood fit.

 $N(\Upsilon(1S))$: ~400k

 $N(\Upsilon(2S)): \sim 100k$

 $N(\Upsilon(3S))$: ~50k

Total efficiency:

Based on simulation and corrected with control data.

Double differential cross-sections ($p_{\rm T}$, y)

Single differential cross-sections

> Compare with NRQCD predictions.

JHEP 07(2018) 134

Y. Feng, B. Gong, L.-P. Wan and J.-X. Wang, Chin. Phys. C 39(2015) 123102

Good agreement at high $p_{\rm T}$.

Integrated cross-sections

JHEP 07(2018) 134

ightharpoonup Over $0 < p_{\rm T} < 15~{\rm GeV}/c$ and 2.0 < y < 4.5:

$$\mathcal{B}(\Upsilon(1S) \to \mu^+ \mu^-) \times \sigma(\Upsilon(1S), 0 < p_{\rm T} < 15 \,\text{GeV}/c, 2 < y < 4.5) = 4687 \pm 10 \pm 294 \,\text{pb},$$

 $\mathcal{B}(\Upsilon(2S) \to \mu^+ \mu^-) \times \sigma(\Upsilon(2S), 0 < p_{\rm T} < 15 \,\text{GeV}/c, 2 < y < 4.5) = 1134 \pm 6 \pm 71 \,\text{pb},$
 $\mathcal{B}(\Upsilon(3S) \to \mu^+ \mu^-) \times \sigma(\Upsilon(3S), 0 < p_{\rm T} < 15 \,\text{GeV}/c, 2 < y < 4.5) = 561 \pm 4 \pm 36 \,\text{pb},$

➤ Almost linear with energies:

Eur. Phys. J. C 74(2014) 2835 Eur. Phys. J. C 72(2012) 2025 JHEP 09(2015) 084

Cross-section ratios of $R_{\Upsilon(iS)/\Upsilon(1S)}$

JHEP 07(2018) 134

Cross-section ratios of $R_{13/8}$

JHEP 07(2018) 134

Cross-section ratios of $R_{13/8}$

JHEP 07(2018) 134

Summary

- > $\Upsilon(nS)$ (n = 1,2,3) production in pp collisions at $\sqrt{s} = 13 \text{ TeV}$ are measured with 2015 data.
- Comparisons of production ratios between different states and between 13 TeV and 8 TeV are given.
- \blacktriangleright NRQCD predictions agree with our data well at high p_{T} .
- LHCb has collected huge heavy quarkonia data, Run II ended, much more results come out soon.

Thanks for your attention!

Backup

JHEP 07(2018) 134

Total efficiency:

Systematic uncertainties

JHEP 07(2018) 134

Source	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	Comment
Fit models	1.9	1.8	2.5	Correlated
Simulation statistics	0.4 – 4.6	0.5 – 5.1	0.5 – 4.4	Bin dependent
Global event requirements	0.6	0.6	0.6	Correlated
Trigger	3.9 – 9.8	3.9 – 9.8	3.9 – 9.8	Bin dependent
Tracking	(0.1 – 6.6)	(0.2 – 6.4)	(0.2 – 6.5)	Correlated
	$\oplus (2 \times 0.8)$	$\oplus (2 imes 0.8)$	$\oplus (2 imes 0.8)$	
Muon identification	0.1 - 7.9	0.1 - 7.6	0.2 – 8.5	Correlated
Vertexing	0.2	0.2	0.2	Correlated
Kinematic spectrum	0.0 – 1.1	0.0 – 2.2	0.0 – 2.5	Bin dependent
Radiative tail	1.0	1.0	1.0	Correlated
Luminosity	3.9	3.9	3.9	Correlated
Total	6.2-14.3	6.2-14.6	6.4-14.9	Correlated

Dominated by the trigger and luminosity uncertainty.