Electromagnetic Transitions of Doubly Charmed Baryons of J^P=3/2⁺ in Light-cone Sum Rules

Er-Liang Cui

Beihang University

Collaborators: Hua-Xing Chen, Wei Chen, Xiang Liu, Shi-Lin Zhu

CLHCP 2018@CCNU 2018/12/21

E-L Cui, etc., PRD 97, 034018 (2018)

- Introduction
- •Light-cone Sum Rules
- •Numerical Analyses
- •Summary and Discussions

- •Light-cone Sum Rules
- •Numerical Analyses
- •Summary and Discussions

□ The doubly heavy baryons provide an ideal platform for investigating the heavy quark symmetry, and have been studied both experimentally and theoretically.

- □ The doubly heavy baryons provide an ideal platform for investigating the heavy quark symmetry, and have been studied both experimentally and theoretically.
- □ In 2002 the SELEX reported the evidence of Ξ_{cc}^+ (3519) in the $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ process. However, searches from the FOCUS, BABAR and Belle did not confirm this state. $M_{\Xi_{cc}^+} = 3519 \pm 1 MeV$

- □ The doubly heavy baryons provide an ideal platform for investigating the heavy quark symmetry, and have been studied both experimentally and theoretically.
- □ In 2002 the SELEX reported the evidence of Ξ_{cc}^+ (3519) in the $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ process. However, searches from the FOCUS, BABAR and Belle did not confirm this state. $M_{\Xi_{cc}^+} = 3519 \pm 1 MeV$
- Theoretically, various methods and models have been applied to study the doubly charmed baryons.

Table 19. Masses of the doubly charmed baryon $\Xi_{cc}(ccq)$ with $J^P = 1/2^+$ in various models.

Method	Reference	Mass (MeV)	Method	Reference	Mass (MeV)
Quark models	[54]	3550-3760	Nonperturbative string	[714]	3690
	[71]	3660	Faddeev equations	[712]	3607
	[73]	3620		[709]	3527
	[710]	3646 ± 12	Bethe–Salpeter equations	[585]	3642
	[557]	3678		[718]	3540 ± 20
	[720]	3627 ± 12	QCD sum rules	[721]	4260 ± 190
Potential models	[705]	3613	_	[724]	3570 ± 140
	[706]	3630	Lattice QCD	[578]	$3608(15)(^{13}_{25})$
	[713]	3480 ± 50		[593]	3549(13)(19)(92)
	[716]	3643	_	[594]	$3665 \pm 17 \pm 14^{\pm0}$
Bag models	[705]	3516		[725]	$3003 \pm 17 \pm 14_{-78}$ 3603(15)(16)
	[715]	3520		[723]	3003(13)(10)
Feynman–Hellmann theorem	[711]	3660 ± 70	—	[598]	3595(39)(20)(6)
Heavy quark effective theory	[566]	3610	_	[726]	3568(14)(19)(1)
Chiral perturbation theory	[719]	3665 ⁺⁹³ 3665 ⁻⁹⁷	_	[727] [600]	3610(90)(120) 3610(23)(22)
Regge phenomenology	[455]	3520_{-40}^{+41}			

A review of open charm and open bottom systems, RPP 80 (2017) 076201

 \square Recently, the LHCb collaboration reported the doubly charmed baryon Ξ_{cc}^{++} (3621)

in the mass spectrum of $\Lambda_c^+ K^- \pi^+ \pi^+$. 180 LHCb 13 TeV 160 Candidates per 5 MeV/ c^2 🕂 Data 140 — Total 120 ----- Signal --· Background 100 80 60 20 0 3500 3600 3700 $m_{\rm cand}(\Xi_{cc}^{++}) \,({\rm MeV}/c^2)$ $M_{\Xi_{cc}^{++}}$. $= 3621.40 \pm 0.72 \pm 0.27 \pm 0.14 MeV$

 \square Recently, the LHCb collaboration reported the doubly charmed baryon Ξ_{cc}^{++} (3621)

LHCb Collaboration, PRL 119, 112001 (2017) F-S Yu, etc., CPC 42 (2018) no.5, 051001

 \square Recently, the LHCb collaboration reported the doubly charmed baryon $\Xi_{cc}^{++}(3621)$ in the mass spectrum of $\Lambda_c^+ K^- \pi^+ \pi^+$. Λ_c^+ 180 LHCb 13 TeV 160 Ξ_{cc}^{+-} Candidates per 5 MeV/*c*² 🕂 Data 140 — Total 120 ----- Signal K^{-}

LHCb Collaboration, PRL 119, 112001 (2017) F-S Yu, etc., CPC 42 (2018) no.5, 051001

- Introduction
- Light-cone Sum Rules
- •Numerical Analyses
- •Summary and Discussions

□ We first investigate the following three-point correlation function

 $\frac{\Xi_{cc}^{++}}{l_r}$

□ We first investigate the following three-point correlation function

 Ξ_{cc}^{++}

 q,ϵ

□ We first investigate the following three-point correlation function

 $\frac{\Xi_{cc}^{++}}{1}$

 $\Box \text{ At the hadronic level, we write the amplitude of the } \Xi_{cc}^{*++} \to \Xi_{cc}^{++} \gamma \text{ as } / \Sigma_{cc}^{++} \gamma \text{ as } / \Sigma$

 \Box At the hadronic level, we write the amplitude of the $\Xi_{cc}^{*++} \rightarrow \Xi_{cc}^{++} \gamma$ as EVEL, we use $\mathcal{M}_{\Xi_{cc}^{*++}\to\Xi_{cc}^{++}\gamma} = e \, g \, \epsilon^{\mu\nu\rho\sigma} \, \overline{u}_{\Xi_{cc}^{++}} \, u_{\Xi_{cc}^{*++},\rho} \, p_{\mu}q_{\nu}\epsilon_{\sigma}^{*} \frac{\Xi_{cc}^{*++}}{p}$

 \square Then we obtain the $\prod_{\alpha} (p,k,q,\epsilon)$ having the following pole terms

$$\Pi_{\alpha}(p,k,q,\epsilon) \approx \frac{2e}{3} \mathcal{F} \epsilon^{\alpha\nu\rho\sigma} p_{\nu} q_{\rho} \epsilon_{\sigma} \times \frac{f_{\Xi_{cc}^{*++}} f_{\Xi_{cc}^{++}}}{(p^2 - M^2)^2} \times \left(p^2 + M^2\right) + \cdots$$

 $g_{\Xi_{cc}^{*++}}$

 $\Box \text{ The currents } J_{\Xi_{cc}^{++}} \text{ and } J_{\Xi_{cc}^{*++}} \text{ write as}$ $J_{\Xi_{cc}^{++}}(x) = \cos \theta_1 \times \epsilon^{abc} \left(c_a^T(x) C \gamma_\mu c_b(x) \right) \gamma^\mu \gamma_5 q_c(x) + \sin \theta_1 \times \epsilon^{abc} \left(q_a^T(x) C \gamma_5 c_b(x) \right) c_c(x)$ $= t_1 \times \epsilon^{abc} \left(c_a^T(x) C \gamma_\mu c_b(x) \right) \gamma^\mu \gamma_5 q_c(x) + t_2 \times \epsilon^{abc} \left(c_a^T(x) C \sigma_{\mu\nu} c_b(x) \right) \sigma^{\mu\nu} \gamma_5 q_c(x)$ $J_{\Xi_{cc}^{*++},\alpha}(x) = \cos \theta_2 \times \Gamma_{\alpha\mu} \epsilon^{abc} \left(c_a^T(x) C \gamma^\mu c_b(x) \right) q_c(x) + \sin \theta_2 \times \Gamma_{\alpha\mu} \epsilon^{abc} \left(q_a^T(x) C \gamma^\mu c_b(x) \right) c_c(x)$

 $\Box \text{ The currents } J_{\Xi_{cc}^{++}} \text{ and } J_{\Xi_{cc}^{*++}} \text{ write as}$ $J_{\Xi_{cc}^{++}}(x) = \cos \theta_1 \times \epsilon^{abc} \left(c_a^T(x) C \gamma_\mu c_b(x) \right) \gamma^\mu \gamma_5 q_c(x) + \sin \theta_1 \times \epsilon^{abc} \left(q_a^T(x) C \gamma_5 c_b(x) \right) c_c(x)$ $= t_1 \times \epsilon^{abc} \left(c_a^T(x) C \gamma_\mu c_b(x) \right) \gamma^\mu \gamma_5 q_c(x) + t_2 \times \epsilon^{abc} \left(c_a^T(x) C \sigma_{\mu\nu} c_b(x) \right) \sigma^{\mu\nu} \gamma_5 q_c(x)$ $J_{\Xi_{cc}^{*++},\alpha}(x) = \cos \theta_2 \times \Gamma_{\alpha\mu} \epsilon^{abc} \left(c_a^T(x) C \gamma^\mu c_b(x) \right) q_c(x) + \sin \theta_2 \times \Gamma_{\alpha\mu} \epsilon^{abc} \left(q_a^T(x) C \gamma^\mu c_b(x) \right) c_c(x)$

□ At the quark-gluon level, we calculate $\Pi_{\alpha}(p,k,q,\epsilon)$ using the method of operator product expansion(OPE).

$$\begin{split} \Pi_{a,\text{light}}^{\Xi_{c}^{t,r} \to \Xi_{c}^{s,t+}}(p,k,q,\epsilon) &= \int d^{4}x \int \frac{d^{4}p_{1}}{(2\pi)^{4}} \int \frac{d^{4}p_{2}}{(2\pi)^{4}} \int_{0}^{1} du \times e^{-ikx} e^{-i(1-u)qx} \times e^{au\rho\sigma}q_{\nu}\epsilon_{\rho} \times e_{u} \\ &\times \left\{ \cos\theta_{1}t_{1} \times \left(-\frac{f_{3r}x_{\sigma}(3m_{c}^{2}+2p_{1}\cdot p_{2})}{2(p_{1}^{2}-m_{c}^{2})(p_{2}^{2}-m_{c}^{2})} \psi^{(a)}(u) + \frac{f_{3r}x_{\sigma}(3p_{2}^{2}+2p_{1}\cdot p_{2})}{72(p_{1}^{2}-m_{c}^{2})^{2}(p_{2}^{2}-m_{c}^{2})^{4}} w_{c}^{2}\langle g_{s}^{2}GG \rangle \psi^{(a)}(u) \right. \\ &- \frac{f_{3r}x_{\sigma}(3p_{1}^{2}+2p_{1}\cdot p_{2})}{24(p_{1}^{2}-m_{c}^{2})^{4}(p_{2}^{2}-m_{c}^{2})} w_{c}^{2}\langle g_{s}^{2}GG \rangle \psi^{(a)}(u) - \frac{f_{3r}x_{\sigma}(3p_{2}^{2}+2p_{1}\cdot p_{2})}{24(p_{1}^{2}-m_{c}^{2})(p_{2}^{2}-m_{c}^{2})^{4}} w_{c}^{2}\langle g_{s}^{2}GG \rangle \psi^{(a)}(u) \\ &+ \cos\theta_{1}t_{2} \times \left(-\frac{10i\chi(p_{1\sigma}+p_{2\sigma})}{(p_{1}^{2}-m_{c}^{2})(p_{2}^{2}-m_{c}^{2})} w_{c}\langle \bar{q}q \rangle \langle q_{r}\rangle \langle q_{r}\rangle$$

- Introduction
- •Light-cone Sum Rules
- •Numerical Analyses
- •Summary and Discussions

 \square To perform numerical analyses, we use the following values at $\mu = 1 \text{ GeV}$.

The parameters in distribution amplitude $f_{3\gamma} = -(4 \pm 2) \times 10^{-3} \text{ GeV}^2$, $\omega_{\gamma}^{V} = 3.8 \pm 1.8,$ $\omega_{\gamma}^{A} = -2.1 \pm 1.0,$ $\chi = (3.15 \pm 0.10) \text{ GeV}^{-2}$ $\kappa = 0.2,$ $\zeta_1 = 0.4,$ $\zeta_2 = 0.3,$ $\kappa^+ = \zeta_1^+ = \zeta_2^+ = 0.$

The quark and gluon condensates $\langle \bar{q}q \rangle = -(0.24 \pm 0.01)^3 \text{ GeV}^3$, $\langle \bar{s}s \rangle = 0.8 \times \langle \bar{q}q \rangle,$ $\langle q_s^2 G G \rangle = (0.48 \pm 0.14) \text{ GeV}^4,$ $\langle q_s \bar{q} \sigma G q \rangle = M_0^2 \times \langle \bar{q} q \rangle,$ $\langle q_s \bar{s} \sigma G s \rangle = M_0^2 \times \langle \bar{s} s \rangle,$ $m_s = 96^{+8}_{-4}$ MeV, $m_c = 1.23 \pm 0.09$ GeV, $m_b = 4.18^{+0.04}_{-0.03}$ GeV.

□ Then the coupling constant is evaluated to be

 $g_{\Xi_{cc}^{*++}\to\Xi_{cc}^{++}\gamma} = 0.30^{+0.16}_{-0.11} \text{GeV}^{-2} = 0.304^{+0.024+0.007+0.033+0.093+0.118}_{-0.026-0.014-0.028-0.045-0.087} \text{GeV}^{-2}$

□ Finally, we use the following decay formula,

$$\Gamma_{\Xi_{cc}^{*++}\to\Xi_{cc}^{++}\gamma} = \frac{|\mathcal{Y}|}{8\pi M_{\Xi_{cc}^{*++}}^2} \times |\frac{1}{4} \sum_{spin} \mathcal{M}_{\Xi_{cc}^{*++}\to\Xi_{cc}^{++}\gamma}|^2$$

to obtain

$$\Gamma_{\Xi_{cc}^{*++} \to \Xi_{cc}^{++} \gamma} = 13.7_{-7.9}^{+17.7} \, \text{keV}$$

 \square Finally, we use the following decay formula,

$$\Gamma_{\Xi_{cc}^{*++}\to\Xi_{cc}^{++}\gamma} = \frac{|\mathcal{Y}|}{8\pi M_{\Xi_{cc}^{*++}}^2} \times |\frac{1}{4} \sum_{spin} \mathcal{M}_{\Xi_{cc}^{*++}\to\Xi_{cc}^{++}\gamma}|^2$$

to obtain

$$\Gamma_{\Xi_{cc}^{*++} \to \Xi_{cc}^{++} \gamma} = 13.7_{-7.9}^{+17.7} \, \text{keV}$$

Note that we have made some approximations when deriving $\Pi_{\alpha}(p,k,q,\epsilon)$ at hadronic level. The total uncertainties of decay with can be $13.7^{+200\%}_{-67\%}$.

 \square Finally, we use the following decay formula,

to obtain

$$\Gamma_{\Xi_{cc}^{*++}\to\Xi_{cc}^{++}\gamma} = \frac{|\mathcal{Q}|}{8\pi M_{\Xi_{cc}^{*++}}^2} \times \left|\frac{1}{4}\sum_{spin}\mathcal{M}_{\Xi_{cc}^{*++}\to\Xi_{cc}^{++}\gamma}\right|^2$$

$$\Gamma_{\Xi_{cc}^{*++} \to \Xi_{cc}^{++} \gamma} = 13.7_{-7.9}^{+17.7} \,\text{keV}$$

Note that we have made some approximations when deriving $\Pi_{\alpha}(p,k,q,\epsilon)$ at hadronic level. The total uncertainties of decay with can be $13.7^{+200\%}_{-67\%}$.

□ Using the same approach, we calculate the following processes.

coupling constants

$$g_{\Xi_{cc}^{*+}\to\Xi_{cc}^{+}\gamma} = 0.23_{-0.09}^{+0.13} \text{ GeV}^{-2},$$

$$g_{\Omega_{cc}^{*+}\to\Omega_{cc}^{+}\gamma} = 0.22_{-0.08}^{+0.11} \text{ GeV}^{-2},$$

$$g_{\Xi_{bb}^{*0}\to\Xi_{bb}^{0}\gamma} = 0.050_{-0.018}^{+0.026} \text{ GeV}^{-2},$$

$$g_{\Xi_{bb}^{*-}\to\Xi_{bb}^{-}\gamma} = 0.081_{-0.020}^{+0.031} \text{ GeV}^{-2},$$

$$g_{\Omega_{bb}^{*-}\to\Omega_{bb}^{-}\gamma} = 0.053_{-0.013}^{+0.015} \text{ GeV}^{-2},$$

relevant decay widths						
$\Gamma_{\Xi_{cc}^{*+}\to\Xi_{cc}^{+}\gamma} = 8.1^{+11.1}_{-4.9}$ keV,						
$\Gamma_{\Omega_{cc}^{*+} \to \Omega_{cc}^{+} \gamma} = 5.4^{+6.9}_{-3.1} \text{ keV},$						
$\Gamma_{\Xi_{bb}^{*0}\to\Xi_{bb}^{0}\gamma} = 0.11_{-0.07}^{+0.13} \text{ keV},$						
$\Gamma_{\Xi_{bb}^{*-} \to \Xi_{bb}^{-} \gamma} = 0.28^{+0.24}_{-0.13} \text{ keV},$						
$\Gamma_{\Omega_{bb}^{*-} \to \Omega_{bb}^{-} \gamma} = 0.08^{+0.05}_{-0.04} \text{ keV}.$						

- Introduction
- •Light-cone Sum Rules
- •Numerical Analyses
- Summary and Discussions

Summary and discussions

□ We have investigated electromagnetic transitions of some doubly heavy baryons using the method of light-cone sum rules.

Electron	nagnetic	transiti	ons of d	loubly c	harmed ba	ryons(ir	1 keV)
Process	Our results	Ref. [16]	Ref. [17]	Ref. [18]	Ref. [19]	Ref. [20]	Ref. [21]
$\Xi_{cc}^{*++} o \Xi_{cc}^{++} \gamma$	$13.7^{+17.7}_{-7.9}$	4.35	1.43	16.7	23.46 ± 3.33	7.21	22.0
$\Xi_{cc}^{*+} o \Xi_{cc}^+ \gamma$	$8.1^{+11.1}_{-4.9}$	3.96	2.08	14.6	28.79 ± 2.51	3.90	9.57
$\Omega_{cc}^{*+} o \Omega_{cc}^+ \gamma$	$5.4^{+6.9}_{-3.1}$	1.35	0.95	6.93	2.11 ± 0.11	0.82	9.45
$\Xi_{bb}^{*0} \to \Xi_{bb}^{0} \gamma$	$0.11^{+0.13}_{-0.07}$			1.19	0.31 ± 0.06	0.98	
$\Xi_{bb}^{*-} \to \Xi_{bb}^{-} \gamma$	$0.28^{+0.24}_{-0.13}$			0.24	0.0587 ± 0.0142	0.21	
$\Omega_{bb}^{*-} o \Omega_{bb}^{-} \gamma$	$0.08^{+0.05}_{-0.04}$			0.08	0.0226 ± 0.0045	0.04	

Our results are (slightly) larger than those obtained using the bag model[16-R. H. Hackman, etc. PRD 18, 2537 (1978), 17-A. Bernotas and V. Simonis, PRD 87, 074016 (2013)], but quite comparable with those obtained using the nonrelativistic constituent quark model [18-L. Y. Xiao, etc. PRD 96, 094005(2017)], the relativistic three-quark model including hyperfine mixing effects [19-T. Branz, etc. PRD 81, 114036 (2010)], the relativistic constituent quark model within the diquark picture[20-Q. F. Lü, etc. PRD, 114006(2017)], and the chiral perturbation theory [21-H. S. Li, etc. PLB 777, 169 (2018)].

Summary and discussions

■ We propose to search for the doubly charmed baryon Ξ_{cc}^{*++} of $J^P = 3/2^+$ via its electromagnetic transition:

$$\Gamma(\Xi_{cc}^{*++} \to \Xi_{cc}^{++} \gamma) = 13.7_{-7.9}^{+17.7} \text{ keV}$$

Summary and discussions

■ We propose to search for the doubly charmed baryon Ξ_{cc}^{*++} of $J^P = 3/2^+$ via its electromagnetic transition:

$$\Gamma(\Xi_{cc}^{*++} \to \Xi_{cc}^{++} \gamma) = 13.7_{-7.9}^{+17.7} \text{ keV}$$

□ In the future work, we would like to calculate the axial coupling constant $g_{\Xi_{cc}^{++}\Xi_{cc}^{+}\pi}$ and look into decay properties of some excited doubly heavy baryons.

Thank you very much 谢谢