Hightlight of Higgs boson measurements with boson final states @ LHC

Yanping Huang

(IHEP, CHINA)

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

iggs particle

11

1.27 GeV

3ª C

charm

24

mass - 2.4 MeV

1/2

charge -

name

Yukawa coupling

spin.

ш

171.2 GeV

top

photon

24

1/2

Weighted Events / The Higgs particle is responsible for the masses * of elementary particles, while was the missing corner stone of the SM before LHC.

ELSEVIER

1s = 8 TeV, L = 5.3 fb⁻¹

1500

Higgs boson production and decays

Upgrades for run-2 (starting 2019) CMS

- new innermost pixel layer (ATLAS)
- pixel detector replacement in 2017 (CMS)
- trigger improvements to cope with high pp interaction rate

Run-2 dataset

Full Run2 data-taking finished (~ 140 fb⁻¹): 13 TeV, 25 ns bunch spacing

Peaking luminosity ~2.1×10³⁴ cm⁻²s⁻¹ (twice design)

Up to ~60 pp interaction per bunch crossing

Results presented are based on the analyses of ~ 36 fb⁻¹ to ~80 fb⁻¹ of 13 TeV data

Higgs Mass

Precise measurements with excellent detector performance : σ(m_H)/m_H ~ 0.17% (CMS) and 0.21% (ATLAS), are better/comparable w.r.t. ATLAS+CMS Run-1 combination 0.19%

Still dominated by statistical uncertainties, uncertainty on coupling ~ 0.5%

Higgs Width

It is impossible to extract the coupling and Higgs width separately from on-shell cross section measurement \rightarrow Importance of $\Gamma_{\rm H}$ measurement.

SM: $m_H = 125 \text{GeV} \rightarrow \Gamma_H = 4.07 \text{MeV}$

 $\Gamma_{\rm H}$ cannot be accessed directly due to the experiment resolution

Run-1 direct Higgs w	vidth measurement:
----------------------	--------------------

Н→үү	H→ZZ	
5.0 (6.2) GeV	2.6 (6.2) GeV	
2.4 (3.1) GeV	3.4 (2.8) GeV	
	1.1 (1.6) GeV	
	H →γγ 5.0 (6.2) GeV 2.4 (3.1) GeV	

3 orders of magnitude larger than SM width

Indirect Higgs Width Measurement

 Assuming NP modifying off-shell coupling without the modification of other background and signal expectation.

Indirect Higgs Width Measurement

Introduce the BSM contribution in the Coupling combination parametrization

Extract the Higgs width with the mass shift from the interference of the $H \rightarrow \gamma \gamma$ w.r.t the continuum background (gg $\rightarrow \gamma \gamma$ box diagrams)

ATLAS @ 3000 fb⁻¹: <160MeV @95%

Higgs Measurement Methodology

 $H \to \tau \tau$

 $H \rightarrow bb$

5.5

2.6

5.0

3.7

Bosonic channels

	Global signal strength				
		Η→γγ	H→ZZ	H→WW	
Run-2	ATLAS	1.06 ^{+0.14} -0.12 <u>ATLAS-CONF-2018-028</u>	1.19 ^{+0.16} -0.15 <u>ATLAS-CONF-2018-018</u>	μggF: 1.21 ^{+0.22} -0.21 μvbf:0.62 ^{+0.37} -0.36 <u>Atlas-conf-2018-018</u>	
		Combination: 1.13±0.05(stat.)±0.05(exp) ^{+0.05} -0.05(sig. th.)±0.03(bkg)			
		ATLAS-CONF-2018-031			
	CMS	1.16+0.15-0.14	1.10+0.19-0.17	$\mu_{ggF:}$ 1.19 ^{+0.16} -0.15	
		<u>HIG-16-040</u>	<u>HIG-18-001</u>	<u>HIG-16-014</u>	
		Combination: 1.09±0.09(stat.) ^{+0.06} -0.05(exp) ^{+0.06} -0.05(th.) <u>HIG-17-031</u>			
R ¹ ATLA	un-1 S+CMS	$\frac{1.09 \pm 0.07(\text{stat.})^{+0.04} - 0.04(\text{exp})^{+0.07} - 0.06(\text{th.})^{+0.03} - 0.03(\text{other sys})}{\text{S+CMS}}$			

- ATLAS and CMS overall consistent in the 3 bosonic decay modes with each other and with SM prediction
- Data precision will be <10% with full Run2 data for γγ and ZZ</p>
- \bullet H \rightarrow WW: systematic uncertainties dominate

Signal strength and production XS from combination

dle

Observe all main production modes.

Significance obs (exp.)	ATLAS+CMS Run-I	ATLAS (single exp)
VBF	5.4σ (4.6σ)	6.5σ (5.3σ)
VH	3.5σ (4.2σ)	5.3σ *(4.8σ)
ttΗ	4.4σ (2.0σ)	5.8σ (5.3σ)

* including VH, H \rightarrow bb (80 fb⁻¹)

к-framework

- Good agreement with the SM prediction
- Interactions with vector bosons and (heavy) fermions are already probed at 10-30% level

Constraints on New Phenomena

In benchmark 2HDM, (κ_V , κ_u , κ_d , κ_l) can be expressed as the function of

Fiducial and differential cross section

- * Measurement designed as model independent as possible.
- * Direct comparison with theoretical predictions at particle level with unfolding method (Bin-by-bin method @ ATLAS, matrix method @ CMS).
- * A wide and diverse range of physical phenomena to be probed:

- Differential X-sections (20 variables):
 - Higgs kinematic:
 - Jet activity:

- Njets p_{Tj1} Njets_50 H_{Tjet} $|y_{j1}|$ p_{Tj2} p_{tj3} $|y_{j2}|$ τ_j $\sum \tau_j$ Nbjets
- VBF sensitive variables: $\Delta \varphi_{H,jj} m_{jj} \Delta y_{jj} p_{THjj}$

 $p_{T,H}$ $|y_H|$ pTt

- Spin CP variables: $\cos\theta * \Delta \varphi_{jj} \Delta y_H$
- 2D variables: $p_{T,H} \times N_{jets} \quad p_{T,H} \times cos\theta^*$
- Fiducial X-sections:
 - 1-/2-/3- jet and inclusive regions
 - Inclusive 1-lepton / MET / VBF / VH enriched regions

Cross Section Measurement

- Similar accuracy in γγ and 4l channels, and consistent with SM predictions within uncertainties
- Significance uncertainty reduction compared to Run1 with finer binning
- Boosted $gg \rightarrow H \rightarrow bb$ search sensitive to the high pT(H) bin

Cross Section Measurement

- Similar accuracy in γγ and 4l channels, and consistent with SM predictions within uncertainties
- Significance uncertainty reduction compared to Run1 with finer binning
- Boosted $gg \rightarrow H \rightarrow bb$ search sensitive to the high pT(H) bin

Simplified template cross section

- Fiducial volumes based on properties of production but not of decay
- Less model dependence
- Make use of Rec. optimization for sensitive improvement
- Further combination and interpretation

The signal yield in each category c is the sum over the yields from the STXS bins

Stage-0: production mode separation H→yy

Process	Result		Uncertainty [fb]			SM prediction
$(y_H <2.5)$	[fb]	Total	(Stat.	Exp.	Theo.)	[fb]
ggF	98	+15 -14	(±11	+9 -8	$^{+4}_{-3}$)	102^{+5}_{-7}
VBF	11.2	+3.4 -3.0	(+2.6 -2.4	+1.3 -1.2	$^{+1.9}_{-1.1}$)	8.0 ± 0.2
VH	4.9	+2.7 -2.5	$\begin{pmatrix} +2.4 \\ -2.2 \end{pmatrix}$	$^{+1.0}_{-0.9}$	$^{+0.6}_{-0.5}$)	4.5 ± 0.2
Тор	1.5	$^{+0.6}_{-0.5}$	$\begin{pmatrix} +0.5 \\ -0.4 \end{pmatrix}$	±0.2	$(+0.2 \\ -0.1$)	1.3 ± 0.1

H→ZZ

Production bin	Cross se	ection $(\sigma \cdot \mathcal{B})$ [pb]	$(\sigma \cdot \mathcal{B})/(\sigma \cdot \mathcal{B})_{\mathrm{SM}}$		
	SM expected	Observed	Observed		
Inclusive production, $ y_H < 2.5$					
	1.33 ± 0.09	$1.57 \pm 0.16 \pm 0.07 \pm 0.04$	$1.18 \pm 0.12 \pm 0.05 \pm 0.03$		
Stage-0 production bins, $ y_H < 2.5$					
ggF	1.17 ± 0.08	$1.22 \pm 0.17 \pm 0.07 \pm 0.04$	$1.04 \pm 0.14 \pm 0.06 \pm 0.03$		
VBF	0.0917 ± 0.0028	$0.25 \pm 0.08 \pm 0.02 \pm 0.01$	$2.8 \pm 0.9 \pm 0.2 \pm 0.2$		
VH	$0.0524^{+0.0026}_{-0.0047}$	$0.05 \pm 0.05 \pm 0.01 \pm 0.01$	$0.9 \pm 1.0 \pm 0.1 \pm 0.1$		
ttH	$0.0154^{+0.0011}_{-0.0016}$	< 0.07	< 4.04 20		

Event categorization

Н→үү

H→ZZ

- Event categories are defined based on kinematic properties of the γγ/41 system + extra particles in the event
- Good sensitivity to main production modes / stage-1 regions

Search for $H \rightarrow Z\gamma$

Similar to $H \rightarrow \gamma \gamma$ ones via **loop interaction** (BR($H \rightarrow Z \gamma$) =0.15%, BR($H \rightarrow \gamma \gamma$)

Di-Higgs search

- Getting close to 10*SM rate for Di-Higgs production
- Constraint on self-coupling (obs/exp) @ 95% CL:
 - **ATLAS** : $-7.1 < \kappa_{\lambda} < 13.6 / -11.8 < \kappa_{\lambda} < 18.8$
 - **CMS:** -5.8<κ_λ<12.0 / -5<κ_λ<12.1

Summary

- Main boson decay channels now entering precision era
- Comprehensive Higgs property measurements: mass, width, fiducial/differential cross section, simplified template cross section: everything is in good agreement with SM
- Still missing: Zy (current limit $\sigma^*BR < 6^*SM$ with 36fb-1)
- Run-2 data collection was done. It is promising in the next year.