Search for heavy resonance decaying to $Z/W/H + \gamma$ with the ATLAS detector

4th CLHCP workshop

Bo Liu

On behalf of the ATLAS Collaboration

Introduction

- Search for heavy resonance decaying to $V/H + \gamma$:
 - Only consider the hadronic decay of V (B ~ 70%) and H → bb̄ decay mode (B ~ 58%)
 - Only use events in the boosted/merge region
 - Final state are fat jet (R = 1.0) and an energetic photon
- Different spin hypothesis signals are considered:
 - ► $X(J = 0) \rightarrow Z + \gamma$ rs Motivated by the extension of the Higgs sector
 - ► $X(J = 1) \rightarrow W'/H + \gamma$ W_{γ} is induced by the HVT model. H_{γ} is induced by the HEL model

►
$$qq/gg \rightarrow X(J=2) \rightarrow Z + \gamma$$

🖙 Higgs Characterisation model

Samples

- Data Sample: data collected by the ATLAS detector in 2015 and 2016, corresponding to 36.1 fb⁻¹
- Signal samples are produced with different mass and spin hypothesis, only considered NWA signals:

Channel	Generator	Spin	Production	V Polarization
Zγ	Powheg+Pythia8	0	gg→X	Transvers
Zγ	MadGraph+Pythia8	2	gg→X	Transvers
Zγ	MadGraph+Pythia8	2	qq→X	Transvers
Wγ	MadGraph+Pythia8	1	qq→X	Longitudinal
Hγ	MadGraph+Pythia8	1	qq→X	-

Background samples:

Channel	Generator
γ+jets	Sherpa
SM W+γ	Sherpa
SM Z+y	Sherpa
tt+ γ (all hadronic and no all hadronic)	MadGraph + Pythia8

Object definition

Photon

- ► $p_{\rm T}$ > 250 GeV and $|\eta|$ < 2.37 (exclude crack region: 1.37 < $|\eta|$ < 1.52)
- Satisfy *Tight* photon ID requirement and *Tight* calo-only isolation

Jet

- Anti-*kt* large-*R* jet (R = 1.0), Trimmed ($f_{cut} < 5\%$, $R_{sub} = 0.2$)
- ▶ $p_{\rm T} > 200 \, {\rm GeV} \, {\rm and} \, |\eta| < 2.0$
- Boson tagger applied based on D₂ and m_J depending on signals
- $> n_{trk} < 30 \text{ for } Z\gamma \text{ and } W\gamma$
- Anti-kt R = 0.2 track jet are used to tag b-jet with MV2cI0 algorithm @ 70% efficiency

Event selection

- Trigger: HLT_gI40_loose
- One good PV with at lease two associated tracks
- * At lease one photon in barrel calorimeter ($|\eta| < 1.37$)
- Events should present at lease one fat jet and one photon fulfilled the object definition
 The leading p_T objects are used to form m_{by}

Event selection

- Trigger: HLT_gI40_loose
- One good PV with at lease two associated tracks
- * At lease one photon in barrel calorimeter ($|\eta| < 1.37$)
- $\Delta R(J, \gamma) > 1.0$
- Events should present at lease one fat jet and one photon fulfilled the object definition
 The leading p_T objects are used to form m_{fy}
- Events are divided into different categories: BTAG , D2 , VMASS and ELSE

\wedge	
Baseline Selection Bases ntrk < 30 & double b-tagging & mass window cut?	BTAG
& D ₂ ^(d+1) substructure & D ₂ ^(d+1) substructure & mass window cut?	→ D2
passes ye	S VMASS
NO	
	ELSE

7.

0-1	Event yield in each category (> 1 TeV)				
Selection	Baseline	BTAG	D2	VMASS	ELSE
$Z\gamma$ search	60,237	25	784	5,569	53,859
$W\gamma$ search	60,237	_	661	5,216	54,360
$H\gamma$ search	60,237	59			

Signal & Background Modelling

Signals are modelled by the *CrystalBall+Gaussian* function

$$S(m_{J\gamma}) = f_C \cdot C(m_{J\gamma}; \mu, \sigma_C, \alpha_C, n_C) + (1 - f_C) \cdot \mathcal{G}(m_{J\gamma}; \mu, \sigma_G)$$

Where CrystalBall function can be written as:

$$C(m_{f_{f}}; \mu, \sigma_{C}, \alpha_{C}, n_{C}) = N_{C} \cdot \begin{cases} \exp\left(-\frac{(m_{f_{f}}-\mu)^{2}}{2\sigma_{C}^{2}}\right) & \frac{m_{f_{f}}-\mu}{\sigma_{C}} > -\alpha_{C} \\ \left(\frac{n_{C}}{\alpha_{C}}\right)^{n_{C}} \exp\left(-\frac{\alpha_{C}^{2}}{2}\right) \left(\frac{n_{C}}{\alpha_{C}} - \alpha_{C} - \frac{m_{f_{f}}-\mu}{\sigma_{C}}\right)^{-n_{C}} & \frac{m_{f_{f}}-\mu}{\sigma_{C}} \le -\alpha_{C} \end{cases}$$

✤ Background are modelled as:

$$B(m_{f\gamma}; p_i) = (1-x)^{p_1} x^{p_2+p_3 \log(x)+p_4 \log^2(x)+p_5 \log^3(x)}, x = m_{f\gamma}/\sqrt{s}$$

 Different regions have different number of parameters for background

Systematic Uncertainties

- Detector related systematic uncertainties are considered and their effects are categorized into three parts: impact on signal efficiency, signal peak position, and signal resolution.
- * Theoretical uncertainties impacts on signal efficiency are also considered

	Impact on normalization and efficiency [%]
Luminosity	2.1
Jet energy scale	2-6
Photon identification and isolation	0.5-1.5
Flavor tagging	10-20
n_{trk} associated with the jet	6
Jet mass resolution	3-6
scale and resolution	< 1
Pileup modeling	1-2
	Impact on signal peak position [
Jet energy and mass scale	1-3
Photon energy scale	< 0.5
	Impact on signal peak resolution
Jet energy resolution	$5 (m_X < 2.5 \text{ TeV}) - 15 (m_X > 2.5 \text{ TeV})$
Photon energy resolution	1-3
	Impact on acceptance
PDF	2-12
Parton shower	2

Results: distributions $(Z\gamma)$

🕫 Data are compatible with background only hypothesis. No significant excess observed.

Data

Data

Background Fit $\pm 1\sigma$

m_v=4 TeV (σ B=1.8 fb) m,=6 TeV (σ B=0.2 fb)

Background Fit $\pm 1\sigma$

m,=1 TeV (σ B=248 fb)

m.=2 TeV (σ B=21 fb)

m,=4 TeV (or B=1.8 fb) m₂=6 TeV (σ B=0.2 fb)

> 6 m_{Jy} [TeV]

m, [TeV]

Results: distributions $(W\gamma \& H\gamma)$

Data

🕫 Data are compatible with background only hypothesis. No significant excess observed.

No significant excess observed

Cross section limits $(Z\gamma)$

- No significant excess observed
- Hadronic channel results are compatible with leptonic results around I TeV
- * Provide complementary results to leptonic $Z + \gamma$ search

- No significant excess observed
- Hadronic channel results are compatible with leptonic results around I TeV
- * Provide complementary results to leptonic $Z + \gamma$ search
- Similar results compared to CMS (JHEP09(2018)I48)

Cross section limits $(W\gamma \& H\gamma)$

No significant excess observed

Cross section limits (H_{γ}) 35.9 fb⁻¹ (13 TeV) 10^{3} 95% CL limit on σ B [fb] CMS $\sigma \times B(X \rightarrow H\gamma)$ (fb) ATLAS Observed Hy: b-tagged category ···· Expected Median Observed limit √s = 13 TeV. 36.1 fb⁻¹ 10^{2} Expected ±1 σ Expected limit Expected ±2 σ Expected limit 68% CL $q\bar{q} \rightarrow X \rightarrow H\gamma$, Spin(X)=1 Expected limit 95% CL 10 10 10⁻¹ 2 2.2 2.4 2.6 2.8 2000 2500 3000 1000 1500

No significant excess observed

Resonance Mass (GeV)

 Similar results comparing to CMS btagged categories limits (CMS also defined untagged category) arXiv: 1712.03143

m_v [TeV]

- * A search for heavy resonance decaying to $Z/W/H + \gamma$ in hadronic final state using 36.1 fb⁻¹ 13 TeV data is presented:
 - ▶ Large decay branching fraction (~ 70%) → relative more statistics in high mass region
 - Five different types of signals are considered depending on resonance spins and decay modes
 - Only consider boosted/merge regime where V/H decay products can be formed with a large-R jet
 - ightarrow Boson tagger technique helps to reduce multi-jet background
 - Multiple categories are defined based on large-R jet quantities and flavour tagging requirements
 - No significant excess is observed in signal regions

Summary

Only used I/4 run-II luminosity, more results are expected with full run-II data.

