New insights of soft hadron production in pp and $\mathrm{p}-\mathrm{Pb}$

collisions at LHC

Jun Song (宋军) Jining University (Qufu, Shandong)
Collaborators : Feng-lan Shao, Zuo-tang Liang, Xing-rui Gou, Hai-hong Li,et al

Outline

1. Motivation
2. Quark number scaling property for hadron p_{T} spectra
3. Quark combination mechanism in pp and $\mathrm{p}-\mathrm{Pb}$ collisions at LHC
4. Summary

Motivation

Recently, striking features observed by ALICE, CMS, LHCb collaborations for high multiplicity events in $p p$ and $p-\mathrm{Pb}$ collisions at LHC, e.g,

- long range angular correlations (ridge), CMS JHEP1009(2010), CMS PLB718(2013),742(2015)
- flow-like patterns, NPA932(14), CMS PLB742(2015),765(2017)
- enhanced strangeness, ALICE Nature Phys.13(2017)
- enhanced baryon/meson ratios,

Is Quark Gluon Plasma (QGP) also formed in pp and p-Pb collisions at LHC?

Theoretical explanations focus on the creation of mini-QGP or phase transition, color reconnection or string overlap at hadronization

Our studies suggest the change of hadronization mechanism from fragmentation to quark combination!

Quark number scaling of hadronic p_{T} spectra

Manipulate data of p_{T} spectra of $\Omega(s s s)$ and $\phi(s \bar{s})$ in $\mathbf{p - P b}$ collisions at 5.02 TeV
(1) divide p_{T} bin by quark number, $p_{T_{\Omega}} / 3, p_{T_{\phi}} / 2$,
(2) take the inverse quark number power of density $d N_{h} / d p_{T} d y$,
i.e. $d N_{\Omega}^{1 / 3} / d p_{T} d y$ and $d N_{\phi}^{1 / 2} / d p_{T} d y$
(3) divide Ω data by a constant to keep the same magnitude with that of $\boldsymbol{\phi}$

$$
f\left(p_{T}\right) \equiv d N_{h} / d p_{T} d y
$$

ALICE data : Phys. Lett. B 758, 389(2016).
Eur. Phys. J. C76, 245 (2016)

Scaling property in different multiplicity classes in p-Pb collisions at 5 TeV

high multiplicity events QNS holds well

small multiplicity events QNS is broken

Scaling property at different multiplicity classes

Scaling property in different multiplicity classes in pp collisions at 7 TeV
high multiplicity events QNS holds well

small multiplicity events QNS is broken

Scaling property in $p p$ collisions at different collision energies

Scaling property between $\Xi^{* 0}(u s s)$ and $K^{* 0}(d \bar{s})$

$$
\frac{f_{\Xi^{* 0}}\left((2+r) p_{T}\right)}{f_{K^{* 0}}\left((1+r) p_{T}\right)}=\kappa_{K^{*}, \Xi^{*}} f_{S}\left(p_{T}\right)
$$

where $r \approx 2 / 3$

Quark Combination Mechanism

Quark number scaling property exhibited is a clear signal of quark combination hadronization for small parton system created in pp and p-Pb collisions at LHC energies

Start from general formula

$$
\begin{aligned}
f_{B_{j}}\left(p_{B}\right) & =\int d p_{1} d p_{2} d p_{3} R_{B_{j}}\left(p_{1}, p_{2}, p_{3} ; p_{B}\right) f_{q_{1} q_{2} q_{3}}\left(p_{1}, p_{2}, p_{3}\right) \\
f_{M_{j}}\left(p_{M}\right) & =\int d p_{1} d p_{2} R_{M_{j}}\left(p_{1}, p_{2} ; p_{M}\right) f_{q_{1} \bar{q}_{2}}\left(p_{1}, p_{2}\right)
\end{aligned}
$$

Assume independent distribution of (anti-)quarks

$$
\begin{aligned}
f_{q_{1} q_{2} q_{3}}\left(p_{1}, p_{2}, p_{3}\right) & =f_{q_{1}}\left(p_{1}\right) f_{q_{2}}\left(p_{2}\right) f_{q_{3}}\left(p_{3}\right) \\
f_{q_{1} \bar{q}_{2}}\left(p_{1}, p_{2}\right) & =f_{q_{1}}\left(p_{1}\right) f_{\bar{q}_{2}}\left(p_{2}\right)
\end{aligned}
$$

Adopt the co-moving combination

$$
\begin{array}{cl}
R_{B_{j}}\left(p_{1}, p_{2}, p_{3} ; p_{B}\right)=\kappa_{B_{j}} \prod_{i=1}^{3} \delta\left(p_{i}-x_{i} p_{B}\right) & \begin{array}{l}
\text { equal velocity combination } \\
\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{m}_{\boldsymbol{i}} / \sum_{\boldsymbol{j}} \boldsymbol{m}_{\boldsymbol{j}}, \\
m_{s}=500 \mathrm{MeV}
\end{array} \\
R_{M_{j}}\left(p_{1}, p_{2} ; p_{M}\right)=\kappa_{M_{j}} \prod_{i=1}^{2} \delta\left(p_{i}-x_{i} p_{M}\right) & \begin{array}{l}
m_{u}=m_{d}=330 \mathrm{MeV}
\end{array}
\end{array}
$$

Rewrite the spectrum

$$
\begin{aligned}
f_{M_{j}}\left(p_{M}\right) & =N_{M_{j}} f_{M_{j}}^{(n)}\left(p_{M}\right) \\
f_{B_{j}}\left(p_{B}\right) & =N_{B_{j}} f_{B_{j}}^{(n)}\left(p_{B}\right)
\end{aligned}
$$

with normalized distribution $\int d p f^{(n)}(p)=1$,

$$
\begin{aligned}
& f_{M_{j}}^{(n)}\left(p_{M}\right)=A_{M_{j}} f_{q_{1}}^{(n)}\left(x_{1} p_{M}\right) f_{\bar{q}_{2}}^{(n)}\left(x_{2} p_{M}\right) \\
& f_{B_{j}}^{(n)}\left(p_{B}\right)=A_{B_{j}} f_{q_{1}}^{(n)}\left(x_{1} p_{B}\right) f_{q_{2}}^{(n)}\left(x_{2} p_{B}\right) f_{q_{3}}^{(n)}\left(x_{3} p_{B}\right)
\end{aligned}
$$

, and yield

$$
\begin{aligned}
& N_{M_{j}}=N_{q_{1} \bar{q}_{2}} \frac{\kappa_{M_{j}}}{A_{M_{j}}}=N_{q_{1} \bar{q}_{2}} P_{q_{1} \bar{q}_{2} \rightarrow M_{j}} \\
& N_{B_{j}}=N_{q_{1} q_{2} q_{3}} \frac{\kappa_{M_{j}}}{A_{M_{j}}}=N_{q_{1} q_{2} q_{3}} P_{q_{1} q_{2} q_{3} \rightarrow B_{j}}
\end{aligned}
$$

$P_{q_{1} \bar{q}_{2} \rightarrow M_{j}}$ and $P_{q_{1} q_{2} q_{3} \rightarrow B_{j}}$ are momentumintegrated combination probabilities
adopt flavor-blind approximation

$$
\begin{aligned}
P_{q_{1} \bar{q}_{2} \rightarrow M_{j}} & =C_{M_{j}} \frac{\bar{N}_{M}}{N_{q \bar{q}}} \\
P_{q_{1} q_{2} q_{3} \rightarrow B_{j}} & =C_{B_{j}} \frac{\bar{N}_{B}}{N_{q q q}}
\end{aligned}
$$

$C_{M_{j}}$ and $C_{B_{j}}$ select the different spin states for the same flavor combination

$$
\begin{gathered}
C_{M_{j}}= \begin{cases}\frac{1}{1+R_{V / P}} & \text { for } J^{P}=0^{-} \text {mesons } \\
\frac{R_{V / P}}{1+R_{V / P}} & \text { for } J^{P}=1^{-} \text {mesons }\end{cases} \\
C_{B_{j}}= \begin{cases}\frac{R_{O / D}}{1+R_{o / D}} & \text { for } J^{P}=(1 / 2)^{+} \text {baryons } \\
\frac{1}{1+R_{O / D}} & \text { for } J^{P}=(3 / 2)^{+} \text {baryons }\end{cases}
\end{gathered}
$$

Parameters $R_{V / P}=0.45 R_{O / D}=2.0$

QCM in p-Pb collisions at 5.02 TeV

ALICE data	QCM
$\bullet 0-5 \%$	$-0-5 \%$
$=5-10 \% \times 4^{-1}$	$-5-10 \% \times 4^{-1}$
$\triangle 10-20 \% \times 4^{-2}$	$-10-20 \% \times 4^{-2}$
$\nabla 20-40 \% \times 4^{-3}$	$-20-40 \% \times 4^{-3}$
$\therefore 40-60 \% \times 4^{-4}$	$-40-60 \% \times 4^{-4}$
$+60-80 \% \times 4^{-5}$	$-60-80 \% \times 4^{-5}$
$-0-20 \%$	$-0-20 \%$

QCM in pp collisions at 7 TeV

Gou,Shao,Song...,PRD96(2017), 094010
Minimum bias events

$\stackrel{5}{\mathcal{D}_{\boldsymbol{T}}}\left({ }^{6} \mathrm{GeV} / \mathrm{C}\right)$

QCM in pp collisions at 13 TeV

Production of single-charm hadrons in pp and $\mathrm{p}-\mathrm{Pb}$ collisions at LHC

Equal-velocity combination of charm quark and light-flavor (anti)quarks
Quark spectra at hadronization

got from light-flavor hadrons

consistent with pQCD calculations

Parameters in the model:
$R_{V / P}=1.5 R_{S 3 / S 1}=1.5$ thermal weights

D mesons of $\boldsymbol{p}_{\boldsymbol{T}} \lesssim \mathbf{8} \mathbf{G e V}$,
$=c$ quark of $p_{T, c} \lesssim 6+l$ quark of $p_{T, l} \lesssim 2 \mathbf{~ G e V}$

$\boldsymbol{p}_{\boldsymbol{T}}$ dependence of charmed Baryon/Meson ratio

Summary

We show that in pp and $\mathrm{p}-\mathrm{Pb}$ collisions at LHC energies
(1) data for $\boldsymbol{p}_{\boldsymbol{T}}$ spectra Ω and ϕ exhibit the constituent quark number scaling property,
(2) Equal velocity combination of light-flavor quarks successfully explain p_{T} spectra of light-flavor hadrons
(3) Equal velocity combination of charm quark and light-flavor quark successfully explain data of D mesons and Λ_{c} baryon,

- clear signals of quark combination mechanism at hadronization

Our results further suggest that

- constituent quark degrees of freedom (CQdof) play important role in the production of hadrons in small quark/parton systems created in pp and p-Pb collisions at LHC.
- It should be incorporated in developing more sophisticated hadronization model

Extraction of quark $\boldsymbol{p}_{\boldsymbol{T}}$ spectra from the data

$$
f_{q}^{(n)}\left(p_{T}\right)=\mathcal{N}_{q} \sqrt{p_{T}}\left[1+\frac{1}{n_{q} c_{q}}\left(\sqrt{p_{T}^{2}+m_{q}^{2}}-m_{q}\right)\right]^{-n_{q}}
$$

similar to AA collisions at RHIC and LHC energies!

[^0]
$\kappa_{M_{i}}$ and $\kappa_{B_{i}}$ can be well determined in QCM with a few parameters

$$
\begin{aligned}
\kappa_{B_{i}} & \approx A_{q_{1}, q_{2}, q_{3}} C_{B_{i}} N_{\text {iter }} / 15\left\langle N_{q}\right\rangle^{2} \\
\kappa_{M_{i}} & \approx 4 A_{q_{1}, \bar{q}_{2}} C_{M_{i}} / 5\left\langle N_{q}\right\rangle
\end{aligned}
$$

where $\left\langle N_{q}\right\rangle$ is total quark number. $C_{B_{i}}$ and $C_{M_{i}}$ are determined by parameters $R_{D / O}$ and $R_{V / P}$.
$\mathcal{N}_{q_{1}, q_{2}, q_{3}}$ and $\mathcal{N}_{q_{1}, \bar{q}_{2}}$ are determined by quark p_{T} spectrum

$$
\begin{array}{r}
A_{q_{1}, q_{2}, q_{3}} \int d p_{T} \prod_{i=1}^{3} f_{q_{i}}^{(n)}\left(x_{i} p_{T}\right)=1 \\
A_{q_{1}, \bar{q}_{2}} \int d p_{T} f_{q_{1}}^{(n)}\left(x_{1} p_{T}\right) f_{\bar{q}_{2}}^{(n)}\left(x_{2} p_{T}\right)=1
\end{array}
$$

We obtain

$$
\begin{gathered}
f_{B_{j}}\left(p_{B}\right)=\kappa_{B_{j}} f_{q_{1}}\left(x_{1} p_{B}\right) f_{q_{2}}\left(x_{2} p_{B}\right) f_{q_{3}}\left(x_{3} p_{B}\right) \\
f_{M_{j}}\left(p_{M}\right)=\kappa_{M_{j}} f_{q_{1}}\left(x_{1} p_{M}\right) f_{\bar{q}_{2}}\left(x_{2} p_{M}\right)
\end{gathered}
$$

which directly leads to

$$
\begin{aligned}
& f_{\Omega}\left(3 p_{T}\right)=\kappa_{\Omega} f_{S}^{3}\left(p_{T}\right) \\
& f_{\phi}\left(2 p_{T}\right)=\kappa_{\phi} f_{S}^{2}\left(p_{T}\right)
\end{aligned}
$$

$$
f_{\Omega}^{\frac{1}{3}}\left(3 p_{T}\right)=\kappa_{\phi, \Omega} f_{\phi}^{\frac{1}{2}}\left(2 p_{T}\right)
$$

For combination of $\mathrm{u}(\mathrm{d})$ and s quark(s), equal velocity implies $\boldsymbol{x}_{\boldsymbol{i}}=\boldsymbol{m}_{\boldsymbol{i}} / \sum_{j} \boldsymbol{m}_{\boldsymbol{j}}$, denote $\frac{x_{u}}{x_{s}}=\frac{m_{u}}{m_{s}}=r$

$$
\begin{aligned}
& f_{\Xi^{* 0} 0}\left((2+r) p_{T}\right)=\kappa_{\bar{\Xi}^{* 0}} f_{s}^{2}\left(p_{T}\right) f_{u}\left(r p_{T}\right) \\
& f_{\mathrm{K}^{* 0}}\left((1+r) p_{T}\right)=\kappa_{\mathrm{K}^{* 0}} f_{s}\left(p_{T}\right) f_{\bar{d}}\left(r p_{T}\right)
\end{aligned}
$$

$$
\frac{f_{\mathcal{B}^{* 0}}\left((2+r) p_{T}\right)}{f_{K^{* 0}}\left((1+r) p_{T}\right)}=\kappa_{\phi, K^{*}, z^{*}} f_{\phi}^{\frac{1}{2}}\left(2 p_{T}\right)
$$

$r \approx 2 / 3$ if we take $m_{s}=500-550 \mathrm{MeV}$ and $m_{u}=m_{d}=330 \mathrm{MeV}$.

p_{T}-integrated Yields of hadrons in $\mathbf{p p}, \mathbf{p - P b}$ and $\mathbf{P b - P b}$ collisions at LHC

 Baryon/Meson yield ratios

[^0]: J.H. Chen, et al, PRC78,034907(08); RQ Wang, Shao, Song, PRC91,014909(15); Shao, Song, et al, PRC80,014909(09);

