

Calibration of Quark versus Gluon Jet Tagging Variables With Charged-Particle Constituent Multiplicity

12/20/2018

Wanyun Su¹, Ben Nachman², Shu Li¹

¹Shanghai Jiao Tong University ²Lawrence Berkeley National Laboratory

Introduction

- Quarks feel the strong interaction, mediated by gluons
- Not seen in the detector, due to confinement property of QCD,

Instead, they hadronize into mesons (qq) or baryons (qqq)

• Gluon and quark jets are difficult to distinguish:

gluon jets tend to be wider and have larger multiplicity.

Track Multiplicity

- Rely on the existing Ntrack to perform in-situ determination of the quark/gluon tagger
- Evaluate the performance of any quark/gluon tagger
- Output the quark and gluon tagging efficiencies as function of the jet pT and eta in order to derive scale factors

ATL-PHYS-PUB-2017-009

Dijet Topologies

- Dijet plus a gamma (quark dominated)
- Samples:mc16_13TeV.423[099-111].Pythia8EvtGen_A14NNPDF23LO_gammajet_DP*.deriv.DAOD_JETM4.e4453_ s3126_r9781_r9778_p3260
- Dijet plus a third jet (gluon dominated)
- Samples:mc16_13TeV.3610[20-32].Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ[0-12]W.deriv.DAOD_JETM1.e*_s31 26_r9781_r9778_p3260
 - Leading jet has $p_{\rm T} > 25 \text{ GeV}$
 - Subleading jet has $p_{\rm T} > 20 \text{ GeV}$
 - ϕ separation of two leading jets: $\Delta \phi_{\text{leading,subleading}} > 2.5$
 - Ordered $|\eta|$ selection: $|\eta_{\text{subleading}}| > |\eta_{\text{leading}}|$ and same *z*-hemisphere
 - Third jet radiation cut:

- If
$$|\eta_{3^{rd}jet}| > 2.5$$
, then $p_{T,3^{rd}jet} < \max\{12, 0.25 \cdot p_{T,avg}\}$
- If $|\eta_{3^{rd}jet}| < 2.5$, then $p_{T,3^{rd}jet} < \max\{14, 0.25 \cdot p_{Tavg}\}$ and $jvf_{3^{rd}jet} > 0.25$

4

Flavor Label and Match

Labeling

- Jets can be labeled using the attribute 'PartonTruthLabelID'
 - Quarks: PartonTruthLabelID<=8
 - Gluons: PartonTruthLabelID==21 or 9

Matching

- Two methods to identify whether the jets are hard scatter jets
 - DeltaR matching(used in this case)
 - GhostAssociation matching

Quarks		Gauge and Higgs Bosons		
Name	pdgld	Name	pdgld	
d	1	g	(9)21	
u	2	Y	22	
s	3	Z ⁰	23	
с	4	W ⁺	24	
b	5	ь ⁰ /H ⁰ 1	25	
t	6		37	
b'	7	н	57	
ť	8			

5

Control region selection

Gluon jets control region(Dijet jets samples)

- 1. events firing the lowest unprescaled single jet trigger'HLT j400'
- 2. leading three reco jets with pT>20 GeV, |η|<2.4 (jets between 20<pT<60 GeV, requiring JVT>0.59)
- 3. leading three reco jets are selected to be hard-scatting jets using DeltaR matching : reco jet within ΔR <0.4 of the truth jet,with relevant truth jets pT>10 GeV.
- 4.look at the 3rd jet.

Quark jets control region(gamma+jet samples)

- 1.same requirements as 2,3 above
- 2.look at which of the leading two jets has a smaller $\Delta R = sqrt(\Delta \eta + \Delta \phi)$ to the photon

Reconstruction jet pT spectrum

• Normalized mc to data ,checked the consistency of leading three jet pT ,drive the ratio of Data/MC

Reconstruction gluon jet fraction

- checking the gluon/quark fraction of leading three jet pT
- 3rd jets in dijet samples are likely to be gluon jet.

Reconstruction gluon jet fraction

have a more detailed look at gluon fraction..

Reconstruction jet η spectrum

 It's actually consistent with note: https://cds.cern.ch/record/2630397/files/CERN-TH ESIS-2018-098.pdf

Reconstruction jet η spectrum

Support note: <u>https://cds.cern.ch/record/2259091</u>

11

Reconstruction Ntrack for MC and Data

Ntrack and pT spectrum for more forward/central jet

In conclusion:

- Jet fragmentation can be distinguished by the jet pT and η, the inhomogeneous detector response and particle-level topology effects might cause the difference.
- Check the fraction of the more forward and the more central jets that are gluon-initiated.
- More central jets have higher gluon fraction, as their Ntracks indicate more constituent multiplicity