

Non-strange and strange D-meson and charm-baryon production in heavy-ion collisions measured with ALICE at the LHC

Xinye Peng On behalf of the ALICE Collaboration

Central China Normal University, China INFN & Univ. Padova, Italy

Heavy Flavour: effective probes of the QGP

- Produced in **initial hard scattering (high** Q^2 **)** processes
- $\tau_{c/b} \sim 0.01 0.1 \text{ fm}/c < \text{QGP formation time (~0.1-1 fm/c)}$
 - Experience the whole system evolution interacting with the medium formed in Pb-Pb collisions

In Pb-Pb collisions:

- Study of charm energy-loss mechanism in the medium
 - Colour-charge and quark-mass dependence
- Participate in the collective motion and thermalisation of the medium
- Modification of hadronisation mechanism in the medium
 - Coalescence mechanism?

Diquark in medium?

The ALICE detector

V0, **ZDC**: Event plane, trigger and centrality/multiplicity determination

Data samples used for the analyses discussed:

Time Projection Chamber (TPC) Vertexing, tracking and PID $|\eta| < 0.9$

Run 2: $\sqrt{s_{NN}} = 5.02 \text{ TeV}$: ~100*10⁶ V0 min.bias events $L_{int} = 13.4 \ \mu b^{-1}$

Hadronic decay channel reconstruction

JHEP 1810 (2018) 174

$D^{0} \to K^- \pi^+$	BR ~ 3.93%	cτ ~ 123 μm
$D^+ \to K^- \pi^+ \pi^+$	BR ~ 9.46%	cτ ~ 312 μm
$D^{*+} \rightarrow D^{0}(K^-\pi^+)\pi^+$	BR ~ 2.66%	-
$D_s^+ \to \varphi(K^-K^+)\pi^+$	BR ~ 2.27%	cτ ~ 150 μm
$\Lambda_c^+ \to p K_s^0$	BR ~ 1.58%	67

- Decay topology selections and PID used to reduce the combinatorial background
- Signal is extracted via an invariant-mass analysis
- Feed-down from beauty-hadron decays are subtracted exploiting FONLL calculations with assumptions on feed-down nuclear modification factor

CLHCP 2018, X.Peng

ALICE

[1] Djordjevic, Phys. Rev. C92 (2015) 024918

D meson R_{AA} in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

• Strong suppression of non-strange D meson in Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV, increasing with centrality

• Similar suppression between $\sqrt{s_{NN}} = 2.76$ TeV and $\sqrt{s_{NN}} = 5.02$ TeV

Described by model [1] at two energies -> harder spectra and denser medium counterbalance

- Similar D-meson, π^{\pm} and charged-particle R_{AA} result for $p_T > 10$ GeV/c in 0-10% and 30-50%, compatible results in 60-80% for $p_T > 1$ GeV/c
- D-meson R_{AA} larger than that of charged pions at low p_T for 0-10% and 30-50% centrality classes
 - > Not straightforward interpretation: N_{part} vs N_{coll} scaling at low p_{T} , different fragmentation and initial spectra shapes, possible

mass and Casimir factor effects, different impact of coalescence and radial flow

D-meson ν_2

 p_{τ} (GeV/c)

• v_2 {EP, $|\Delta \eta| > 0.9$ }, $\sqrt{s_{_{\rm NN}}} = 5.02 \text{ TeV}$ v₂{EP, |Δη|>0}, \screwssists s_{NN} = 2.76 TeV π^{\pm} , |y| < 0.5, $\sqrt{s_{_{\rm NN}}} = 2.76 \text{ TeV}$ □ *v*₂{SP, |Δη|>0.9}, JHEP 06 (2015) 190⁻⁻ D Run 2 ◊ *v*₂{EP, |∆η|>2}, PLB 719 (2013) 18 D Run 1 π^{\pm} 30-50% Pb-Pb **Published!**

INFN

Positive D-meson v_2 in 2 < p_T < 10 GeV/*c*

- Charm guark sensitive to medium collective motion
- Compatible with that of non-strange D mesons
- D-meson v_2 compatible between $\sqrt{s_{\rm NN}} = 2.76$ TeV and $\sqrt{s_{\rm NN}} = 5.02$ TeV

16

18

20

22

*p*_{_} (GeV/*c*)

24

- D-meson v_2 is similar to that of charged pions
 - Hint of **larger** pion v_2 at $p_T < 4$ GeV/c

CLHCP 2018, X.Peng

0.2

0.1

-0.1 0.3

0.2

0.1

0.4

0.3

0.2 0.1

ALI-PUB-132093

- Models in which charm quarks pick up collective flow via recombination or subsequent elastic collisions in expanding medium better describe both v_2 and R_{AA} at low p_T (LBT, MC@sHQ, PHSD, POWLANG)
- Improved precision of the measurement can provide important constraints on models and help to extract

information about the medium properties. For models describing reasonably the data

> $\nu_2 \rightarrow 1.5 < 2\pi T D_s(T) < 7$ at $T_c \rightarrow \tau_{charm} = 3-14$ fm/c

• Hint of larger R_{AA} for Λ_c^+ at 0-80% than D meson at 0-10%

 \succ Hierarchy $\Lambda_c^+ R_{AA} > D_s^+ R_{AA} >$ non-strange D-meson $R_{AA} >$ pion R_{AA}

Qualitatively in agreement with the scenario of fragmentation in pp and

fragmentation+coalescence in Pb-Pb collisions Catania: Eur.Phys.J.C (2018) 78:348

CLHCP 2018, X.Peng

12

$\Lambda_{\rm c}^+/{\rm D}^0$ ratio in Pb-Pb

- Λ_c^+/D^0 ratio measured in Pb-Pb, hint of enhancement w.r.t pp and p-Pb Shao-Song: Phys. Rev. C 97, 064915 Catania: Eur. Phys. J.C (2018) 78:348
- Λ_c^+/D^0 results described by model calculations including only coalescence.

CLHCP 2018, X.Peng

ALICE

Λ_c^+/D^0 ratio in Pb-Pb

• Λ_c^+/D^0 ratio measured in Pb-Pb, hint of enhancement w.r.t pp and p-Pb

Catania: Eur. Phys. J.C (2018) 78:348

- Λ_c^+/D^0 results described by model calculations including only coalescence.
- Λ_c^+/D^0 in 6 < p_T < 12 GeV/*c* is similar to STAR measurement in 3-6 GeV/*c*.

CLHCP 2018, X.Peng

ALICE

- New charmed-baryon measurements:
 - > Λ_c^+/D^0 in Pb-Pb collisions, hint of enhancement w.r.t pp and p-Pb collisions
- D mesons results in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV :
 - > D^0 , D^+ , D^{*+} , D_s^+ , R_{AA} : increasing suppression from peripheral to central collisions
 - ▶ Ratio of D_s^+ w.r.t non-strange D-meson results: hint of enhancement in Pb-Pb w.r.t pp →

coalescence and strangeness enhancement?

- > D^0 , D^+ , D^{*+} , $D_s^+ \nu_2$: strong coupling of charm quark with the medium
 - First measurement of $D_s^+ \nu_2$

BACK UP

Poster ID: 116 by A.Festanti Event Shape Engineering Analysis

• Event eccentricity quantified by q_2 which depends on multiplicity $\tilde{F}_{\sigma^{N}}$

and strength of the flow

ALICE

 $\langle q_2^2 \rangle \approx 1 + \langle (\mathbf{M} - 1) \rangle \langle (\boldsymbol{v}_2^2 - \delta_2) \rangle$

• Opportunity to study the charm-quark coupling to the bulk of

light quarks by measuring v_2 in events with different q_2 values

INFN

• Significant separation of D-meson v_2 in events with large and

small q_2

Charm quarks are sensitive to the light-hadron bulk

collectivity and event-by-event initial condition fluctuations

• Auto-correlations between q_2 and D mesons not removed

completely

• ALICE measurement systematically higher than LHCb

Λ_c^+/D^0 ratio compared with LHCb

LHCb:Nucl. Phys. B871 (2013) 1–20

• ALICE measurement systematically higher than LHCb

