DESY test beam facilities for HEP detector R&D

Yi Liu (DESY) for the DESY telescope and test beam crew CLHCP, CCNU Wuhan, Dec 21, 2018

Characterize the HEP detector R&D

A list characteristics of HEP detector:

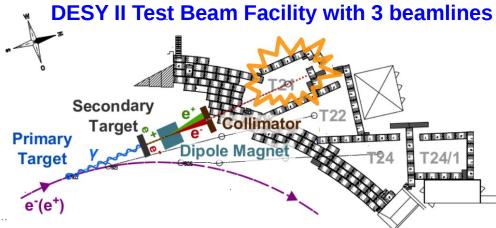
- Spacial resolution:
 - Modern Pixel detector detector has fine granularity in order 10um
- Time resolution:
 - LHC bunch cross time is 25ns
 - New ATLAS HGTD ~30ps
- Hit Efficiency:
 - More hit recorded, better track reconstruction efficiency
- Noisy occupancy:
 - Fake hit will confuse the track reconstruction algorithm
- Material budget
 - Required to minimize the multiple scattering
 - some assembled components are not able to be calculated in math

A few methods which can measure the above detector characteristics

- 1. Radiation source
- 2. Infra Laser to imitate a particle track
- 3. Testbeam/Telescope with real high energy particle

Beam Test for HEP detector R&D

Better than radiation source, infra laser


Source measurements

• Known amount of deposited charge but no spatial information

Beam Test

- Track position precisely known O(µm)
- Known charge deposition

=>Characterization of sensors &readout at most realistic environment, eg. resolution, noise occupancy, efficiency

• Source of 1-6 GeV e⁺/e⁻

Laser measurements

Good spatial resolution but

unknown charge deposition

Optical diffusion and reflection

- Operating in a magnetic field
- Average particle flux: 1-10 kHz/cm² e⁻ (@ 2 GeV/c)

DESY. | DESY test beam facilities for HEP detector R&D | Yi Liu, Dec 21, 2018

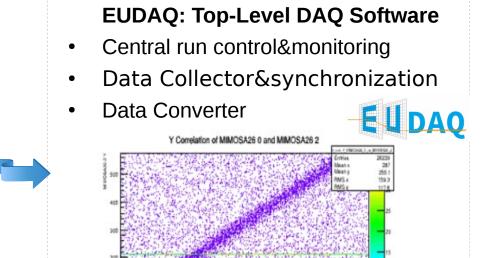
EUDET-type telescopes family

CALADIUM @ SLAC in Stanford, USA

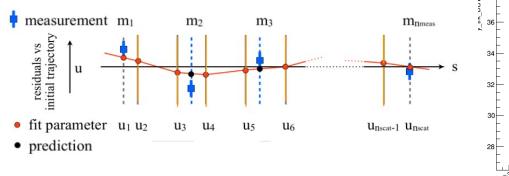
AIDA @ SPS, H6B

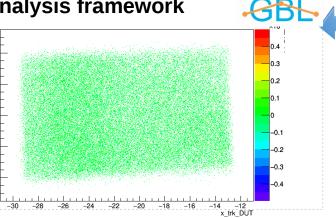
DATURA @ TB21

DURANTA @ TB22

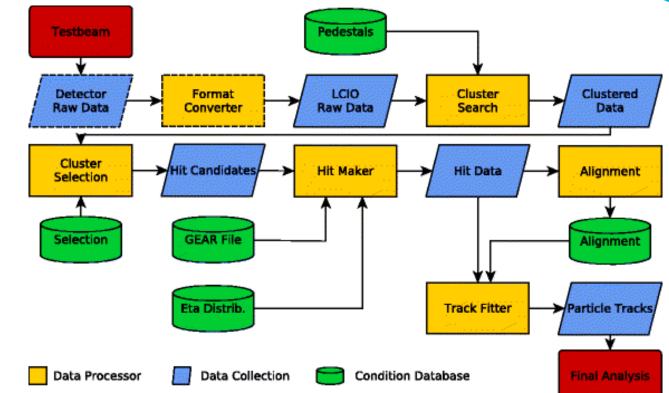

The EUDET-type infrastructures

From data taking to results


EUDET-type Hardware


- 6 Mimosa26 & DAQ
- Mechanics & integration
- Trigger system

EUTelescope: Offline track reconstruction&analysis framework

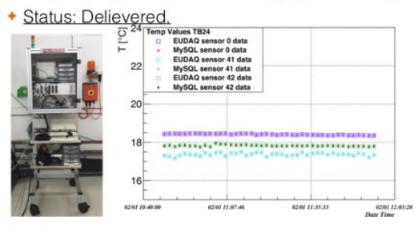

DESY. | DESY test beam facilities for HEP detector R&D | Yi Liu, Dec 21, 2018

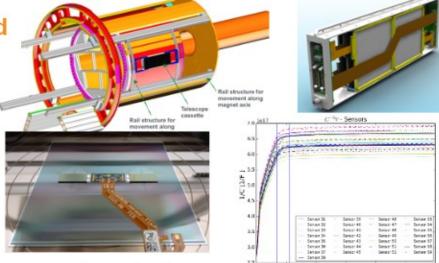
Track reconstruction

elescope

Take hits and output tracks

• EUTelescope is used for reconstruction&analysis of testbeam data




- GBL (General Broken Lines) tracking algorithm accounts for multiple scattering
- ROOT TGeo-based geometry description allows user-specific sensor layout (pixel/strip, Box/Annulus)

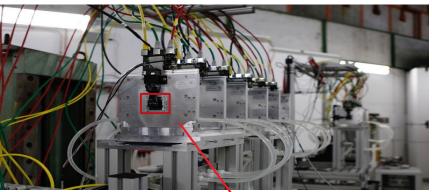
Ongoing Facility improvement

Large Area X-Y Coverage Readout Integrated Strip Telescope (LYCORIS) (by Mengqing Wu)

- #1: A new environmental slow control system
 - supported / maintained by DESY;
 - Commercial Rack-based data logger with data stored in MySQL DB, integrated to a common DAQ used at test beam: EUDAQ2;
 - Only temparature/humidity/dew point/air pressure sensor mounted, possible to mount new sensor;
 - Easy to integrate User monitoring system via MySQL.

#2: A large area micro-strip telescope

- Build a new large area strip telescope (LYCORIS) within the 1T solenoid in DESY II beam area 24;
- Telescope design to address user demands:
 - Large active area (10x10 cm²) to cover 90-96% particles; Limited space ~3.5 cm for a large DUT (e.g. a large prototype TPC);
 - Momentum measurements: spatial resolution better than 10 µm along bending direction;
 - Resolution along field axis less important: $\sigma_Z > 1 \text{ mm}$
- Status: prototype delivery end of Jan. 2019.


LYCORIS delivery is planed at the end of Jan 2019

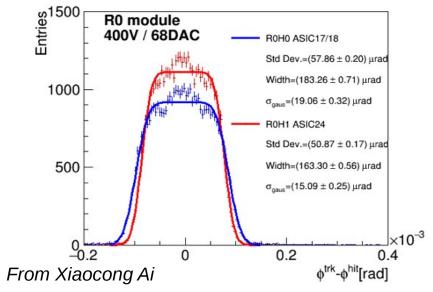
Bias Voltage [V]

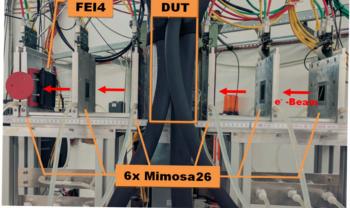
Ongoing Facility improvement

ALPIDE based telescope

- ALPIDE sensor key features:
 - → 29um x 27um pixel pitch
 - → 30x 13.8mm area (1024x512 pixels)
 - Global shutter readout (*important)
 - Time resolution 2-4 μ s
 - Noiseless
- The new telescope:
 - 6 sensor planes with independent readout
 - Integrated with current trigger system
 - Integrated with current DAQ (EUDAQ)
 - Provides same interface as current EUDET telescope
 - Capability of online tracking and automatic alignment
- USTC is working with DESY and developing the readout electronic.
- The new telescope prototype test on testbeam is planed in February 2019.

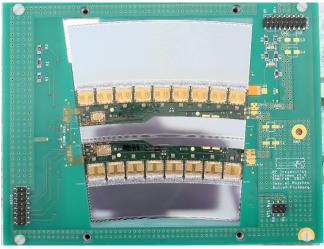
To be replaced


ALPIDE readout by USTC

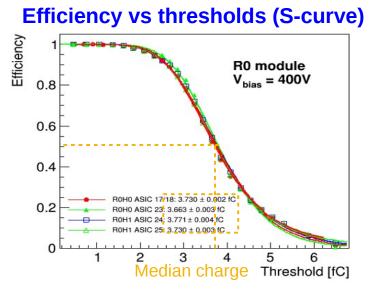

User Example: ATLAS ITk Strip

Sensor Spatial resolution

- **Goal**: Characterization of assembled ITk Strip modules
- **Setup:** 6 M26s+DUT+FEI4 timing plane
 - Additional FEI4 (25 ns timing resolution) is used to match tracks to triggers for correct efficiency calculation


ITk Strip R0 module angular Residual ($\phi^{track} - \phi^{hit}$)

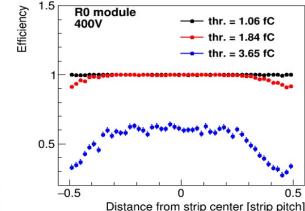
ATLAS ITk Strip Testbeam Setup


ATLAS ITk Strip R0 module

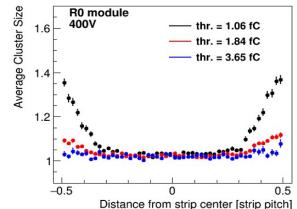
DESY. | DESY test beam facilities for HEP detector R&D | Yi Liu, Dec 21, 2018

User Example: ATLAS ITk Strip

Sensor Efficiency & interstrip behavior



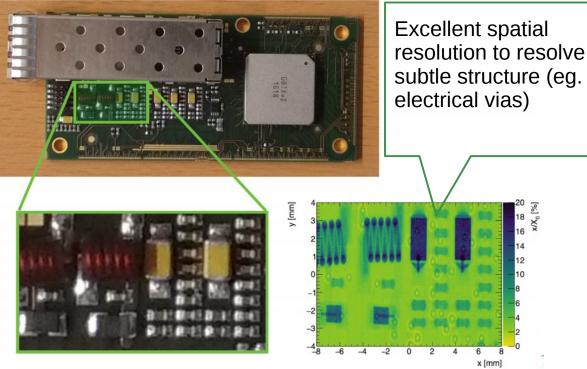
ITk Strip uses binary read-out
=>Information about amount of charge lost
=>threshold scan: gives fraction of electrons depositing that charge



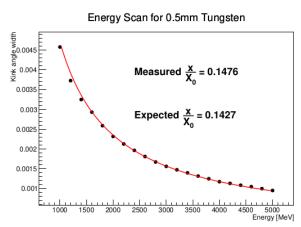
Inter-strip cluster size

Inter-strip efficiency

 Excellent pointing resolution allows looking at inter-strip behavior



User Example: ATLAS ITk Strip


Material Budget Measurement

- **Goal**: Position-dependent measurement of material budget by measuring the scattering angle
- Setup: 6 M26s+passive DUT(no readout)

ITk End-of-Petal Card

From Jan-Hendrik Arling, Claire David, Michaela Queitsch-Maitland

Highland formula

$$\theta_0 = \frac{13.6[\text{MeV}]}{p} \left(\frac{x}{X_0}\right)^{0.555}$$

The Gaussian distributed width of the scattering angle (Θ_0) is dependent on:

- momentum of the scattering particles(p),
- the thickness (x) and radiation length (X_0) of the scatterer

Info for DESY testbeam users

- Further Information of DESY testbeam: https://tesbeam.desy.de
- EUDET telescope setup and user DUT integration: https://telescopes.desy.de
- A check list to plan testbeam:
 - Beam properties: particle type, rate, energy
 - Detector runtime condition: cooling, humanity, voltage, or different setups
 - Accumulated luminosity: total testbeam time
 - Synchronization with telescope data: trigger interface in hardware

To plan a detailed testbeam, book a DESY testbeam time slot by email: testbeam-coor@desy.de

Summary

- Testbeam with telescope fits requirements to characterize the HEP detector.
- EUDET telescopes play a significant role at DESY testbeam
- Telescope developments are ongoing
- A user case: ATLAS upgrade phase-II ITk strip testbeam
- Information to book a testbeam time slot at DESY

