Search for new physics in top quark production in di-lepton final state

CLHCP 2018, Wuhan (China) December 19-22, 2018

Wenxing Fang(BUAA, ULB)

- \triangleright As we know if new physics scale is reachable at the LHC then the new physics could be directly observed via the production of new particles.
- ➢ Otherwise, it could affect standard model (SM) interactions indirectly by modifications of SM couplings or enhancements of rare SM processes.
- \triangleright In the latter case, the effective field theory (EFT) approach is useful to parametrize and constrain the new physics in a model-independent way.
- \triangleright In EFT we extend the SM by adding new terms to the Lagrangian.
- \triangleright The underlying new physics particle gets integrated out leaving only the effective vertex. Such as the Fermi theory for neutron decay.

- ➢ Due to its large mass and close to the electroweak symmetry breaking scale, the top quark is expected to play an important role in several new physics scenarios.
- ➢ An EFT approach is followed to search for new physics in the top quark sector in the dilepton final states [\(CMS-TOP-17-020](https://cds.cern.ch/record/2639731?ln=en)). The operators and the related effective Lagrangians can be written as:

$$
O_{\phi q}^{(3)} = (\phi^+ \tau^I D_\mu \phi)(\bar{q} \gamma^\mu \tau^I q), \quad L_{eff} = \frac{C_{\phi q}^{(3)}}{\Lambda^2} \frac{g v^2}{\sqrt{2}} \bar{b} \gamma^\mu P_L t W_\mu^- + h.c., \tag{1}
$$

$$
O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W_{\mu\nu}^{I}, \qquad L_{eff} = -2\frac{C_{tW}}{\Lambda^{2}}v\bar{b}\sigma^{\mu\nu}P_{R}t\partial_{\nu}W_{\mu}^{-} + h.c., \qquad (2)
$$

$$
O_{tG} = (\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\bar{\phi}G_{\mu\nu}^{A}, \qquad L_{eff} = \frac{\text{Re}C_{tG}}{\sqrt{2}\Lambda^{2}}v\left(\bar{t}\sigma^{\mu\nu}\lambda^{A}t\right)G_{\mu\nu}^{A} + h.c., \qquad (3)
$$

$$
O_G = f_{ABC} G_{\mu}^{Av} G_{\nu}^{B\rho} G_{\rho}^{C\mu}, \qquad L_{eff} = \frac{C_G}{\Lambda^2} f_{ABC} G_{\mu}^{Av} G_{\nu}^{B\rho} G_{\rho}^{C\mu} + h.c.,
$$
\n
$$
O_{\mu(c)G} = (\bar{q} \sigma^{\mu\nu} \lambda^A t) \bar{\phi} G_{\mu\nu}^A, \qquad L_{eff} = g_s \frac{C_{\mu(c)G}}{\bar{g}^2} \bar{v} \left(\bar{u} \left(\bar{c} \right) \sigma^{\mu\nu} \lambda^A t \right) G_{\mu\nu}^A + h.c., \tag{5}
$$

$$
D_{u(c)G} = (\bar{q}\sigma^{\mu\nu}\lambda^A t)\bar{\phi}G^A_{\mu\nu}, \qquad L_{eff} = g_s \frac{u(c)G}{\sqrt{2}\Lambda^2}v\left(\bar{u}\left(\bar{c}\right)\sigma^{\mu\nu}\lambda^A t\right)G^A_{\mu\nu} + h.c.,
$$

- \Box **O**_{tW}: it has the right handed Wtb interaction. ❑ After investigating, we conclude that the kinematic distributions in tW production and top decay when O_{tw} is present are similar to the SM and the effects are not big enough to be observed.
- \Box **O**_{Θ q} : it has the same interaction as the SM Wtb interaction. Therefore, it does not affect any final state kinematic distributions.

$$
O_{\phi q}^{(3)} = (\phi^+ \tau^I D_\mu \phi)(\bar{q} \gamma^\mu \tau^I q), \quad L_{eff} = \frac{C_{\phi q}^{(3)}}{\Lambda^2} \frac{g v^2}{\sqrt{2}} \bar{b} \gamma^\mu P_L t W_\mu^- + h.c., \tag{1}
$$

$$
O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W^{I}_{\mu\nu}, \qquad L_{eff} = -2\frac{C_{tW}}{\Lambda^{2}}v\bar{b}\sigma^{\mu\nu}P_{R}t\partial_{\nu}W^{-}_{\mu} + h.c., \qquad (2)
$$

$$
O_{tG} = (\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\bar{\phi}G_{\mu\nu}^{A}, \qquad L_{eff} = \frac{\text{Re}C_{tG}}{\sqrt{2}\Lambda^{2}}v\left(\bar{t}\sigma^{\mu\nu}\lambda^{A}t\right)G_{\mu\nu}^{A} + h.c., \qquad (3)
$$

$$
O_G = f_{ABC} G_{\mu}^{Av} G_{\nu}^{B\rho} G_{\rho}^{C\mu}, \qquad L_{eff} = \frac{C_G}{\Lambda^2} f_{ABC} G_{\mu}^{Av} G_{\nu}^{B\rho} G_{\rho}^{C\mu} + h.c., \qquad (4)
$$

$$
D_{u(c)G} = (\bar{q}\sigma^{\mu\nu}\lambda^A t)\bar{\phi}G^A_{\mu\nu}, \qquad L_{eff} = g_s \frac{C_{u(c)G}}{\sqrt{2}\Lambda^2}v\left(\bar{u}\left(\bar{c}\right)\sigma^{\mu\nu}\lambda^A t\right)G^A_{\mu\nu} + h.c., \qquad (5)
$$

 \Box **O**_{tG} : it affects both tW and tt production. ❑ After investigating, we conclude that the kinematic distributions in both tW and tt production when O_{tG} is present are similar to the SM and the effects are not big enough to be observed.

 \Box **O**_G : it affects tthe production only. ❑ After investigating, we conclude that the kinematic distributions in tt production are affected when O_G is present.

4

$$
O_{\phi q}^{(3)} = (\phi^+ \tau^I D_\mu \phi)(\bar{q} \gamma^\mu \tau^I q), \quad L_{eff} = \frac{C_{\phi q}^{(3)}}{\Lambda^2} \frac{g v^2}{\sqrt{2}} \bar{b} \gamma^\mu P_L t W_\mu^- + h.c., \tag{1}
$$

$$
O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^{I}t)\bar{\phi}W^{I}_{\mu\nu}, \qquad L_{eff} = -2\frac{C_{tW}}{\Lambda^{2}}v\bar{b}\sigma^{\mu\nu}P_{R}t\partial_{\nu}W^{-}_{\mu} + h.c., \qquad (2)
$$

$$
O_{tG} = (\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\bar{\phi}G_{\mu\nu}^{A}, \qquad L_{\theta f} = \frac{\text{Re}C_{tG}}{\sqrt{2}\Lambda^{2}}v\left(\bar{t}\sigma^{\mu\nu}\lambda^{A}t\right)G_{\mu\nu}^{A} + h.c., \qquad (3)
$$

$$
O_G = f_{ABC} G_{\mu}^{Av} G_{\nu}^{B\rho} G_{\rho}^{C\mu}, \qquad L_{eff} = \frac{C_G}{\Lambda^2} f_{ABC} G_{\mu}^{Av} G_{\nu}^{B\rho} G_{\rho}^{C\mu} + h.c., \qquad (4)
$$

$$
D_{u(c)G} = (\bar{q}\sigma^{\mu\nu}\lambda^A t)\bar{\phi}G^A_{\mu\nu}, \qquad L_{eff} = g_s \frac{C_{u(c)G}}{\sqrt{2}\Lambda^2}v\left(\bar{u}\left(\bar{c}\right)\sigma^{\mu\nu}\lambda^A t\right)G^A_{\mu\nu} + h.c., \tag{5}
$$

 \Box The operators O_{uG} and O_{cG} lead to flavor changing neutral current (FCNC) interactions of top quark. ❑As we know the FCNC processes do not exist at tree level in the SM and are induced only at loop level. Therefore the rates of FCNC processes are highly suppressed. The observation of such processes will be very important for searching new physics.

 \Box **O**_{uG}, **O**_{cG} : it affects tW production only. ❑ The presence of the **OuG** and **OcG** operators changes the initial state particle and leads to different kinematic distributions for the final state particles compared to the SM tW process.

 \Box When EFT couplings are non-zero, tt or tW cross section contains:

- 1. SM term: σ_{SM}
- 2. Interference term: $C_i \sigma_i^{(1)}$

$$
\sigma = \sigma_{SM} + C_i \sigma_i^{(1)} + C_i^2 \sigma_i^{(2)}
$$

3. Pure new physics term: $C_i^2 \sigma_i^{(2)}$

Cross sections for tt̄ and tW production [in pb] for the various effective couplings for $\Lambda = 1$ TeV and the respective available k-factors:

Object and event selection

□ Dataset: $35.9fb^{-1}$ in 2016. **T** Trigger: dilepton or single lepton triggers.

Electron

 \triangleright P_T>20 GeV, $|\eta|$ < 2.4 (Gap removed) ➢Passing electron ID and isolation

Muon \triangleright P_T>20 GeV, $|n|$ < 2.4 ➢Passing muon ID and isolation 7

Jet/bjet

```
\triangleright P<sub>T</sub>>30 GeV, | η |<2.4, \DeltaR(lepton, jet) > 0.4
➢Passing jet/bjet ID
```
❖ Event selection

- \triangleright At least 1 pair of leptons (leading lepton p_T>25 GeV).
- \triangleright The first two selected leptons which are sorted due to the p_T should have opposite sign charge.
- \triangleright Events are categorized to ee, $\mu\mu$, and e μ channels using the flavors of the two highest p_T leptons.
- \triangleright Missing E_T>60 GeV and M_{$\ell\ell$} should be out of Z mass window [76 GeV,106 GeV] in ee, $\mu\mu$ channels.

 \Box The selection is the same as SM tt, tW cross section measurement [4-6] in CMS.

Backgrounds

❑The background from processes giving two prompt leptons is taken from Monte Carlo samples and normalized to the luminosity. It consists mostly of events from tt, tW, WW, other di-boson processes and Drell-Yan (only in eμ channel, the data driven method is used for DY estimation for ee and μμ channel).

 \Box For the jet fake lepton backgrounds which include W + jet and QCD process are estimated by data-driven technique called same sign method.

- ❖ We use the fact that the probability of assigning positive or negative charge to the misidentified jet should be equal.
- ❖ The contributions of all other backgrounds are subtracted from data in same sign region using MC samples to find jet contribution.

Event categorization

- \triangleright Largest number of tW events : (1-jet, 1-tag) followed by (2-jets,1-tag).
- \triangleright tt̄ dominant region is (\geq 2-jets,2-tags).
- ➢ For ee and μμ channels, events with zero btagged jet are dominated by DY events and are not used in the analysis.
- \triangleright For eµ channel, the (1-jet,0-tag) is used because the contamination of DY events is lower and a significant amount of tW events are present.

Event table for used channels and categories

[CMS-TOP-17-020](https://cds.cern.ch/record/2639731?ln=en)

Systematics uncertainties

- ❑ Experimental uncertainties
	- ➢ Luminosity: 2.5%
	- \triangleright Pile-up reweighting: minimum bias xs is varied by 4.6%
	- \triangleright Lepton reconstruction, identification and isolation and Trigger scale factors
	- \triangleright Jet energy scale and resolution
	- ➢ Un-clustered energy
	- \triangleright b-tagging/mistagging
- \Box tt and tW modeling uncertainty
	- ➢ Renormalization/factorization scale (QCD scale)
	- ➢ Parton Distribution Functions (PDF) (only tt)ҧ
	- \triangleright Top mass
	- \triangleright tW/tt interference (DS/DR)
	- \triangleright ME/PS matching (hdamp variation-only tt)
	- ➢ Scale variations of initial state radiation and final state radiation (ISR/FSR)
	- \triangleright Color reconnection (only tt)
	- \triangleright Underlying event (only tt)
- **u** tt normalization: 5% for O_{qq} , O_{tW} and FCNC (O_{uG} and O_{cG})
- \Box tW normalization: 10% for \dot{O}_G and FCNC (O_{uG} and O_{cG})
- ❑ DY modeling uncertainty: PDF and QCD scale (only consider for eμ channel in 1jet,0tag region)
- □ DY normalization error:
	- \geq ee and μμ channels: 30%
	- \triangleright eµ channel: 1 jet,0tag region is 15% ([SMP-16-015\)](http://cms.cern.ch/iCMS/analysisadmin/cadilines?line=SMP-16-015&tp=an&id=1801&ancode=SMP-16-015), for other regions is 50%
- \Box Prompt background (except tt̄,tW, DY) normalization: 50%
- ❑ Non-prompt background (from same sign) normalization: 50%
- ❑ tW FCNC: PDF and QCD scale

Signal extraction

 \Box The purpose of the analysis is searching for deviations to the SM tt and tW predictions due to new physics

 \triangleright **O**_{φq}, **O**_{tW}, **O**_{tG}: Using Multi Layer Perceptron (MLP) to split SM tW (as signal) and SM tt̄ (as background) **▷** $\mathbf{O}_{\mathbf{u}\mathbf{G}}$ **,** $\mathbf{O}_{\mathbf{c}\mathbf{G}}$ **: Using MLP to split FCNC tW (signal) and SM tW+tt̄ (background)** \triangleright **O**_G : No shape analysis \rightarrow no MVA

The signal extraction strategy for different couplings in n-jet, m-tag categories

❖The MLP input variables for n-jet, m-tag categories are shown in next slide

❖MLP input variables:

NN output for different categories:

NN output

[CMS-TOP-17-020](https://cds.cern.ch/record/2639731?ln=en)

13

35.9 fb⁻¹ (13 TeV)

 $C_{\rm tG}(0.20)$

 \div Data (2016)

 645000

CMS

NN output for different categories:

Data and predication are in good agreement.

[CMS-TOP-17-020](https://cds.cern.ch/record/2639731?ln=en)

Results

 \cdot It is assumed that new physics only affect tt̄ and tW normalization.

❖ The result when the cross section for tt̄, tW, $\sigma_i^{(1)}$ and $\sigma_i^{(2)}$ are varied by one standard deviation which comes from Qscale and PDF uncertainties are also shown.

$\mathop{\rm CMS-TOP-1}\nolimits$

Results

The summary of the observed and expected allowed intervals at 68% CL (best fit with in up and low limit) and 95% CL (in square brackets)

[CMS-TOP-17-020](https://cds.cern.ch/record/2639731?ln=en)

- ➢A search for new physics in top quark production in dilepton final states has been performed using 35.9 fb⁻¹ from CMS at 13 TeV in 2016.
- ➢This is the first search for new physics using the tW process. No significant deviation is observed.
- ➢EFT is used for new physics parameterization. The results are interpreted to constrain the relevant effective couplings using a dedicated multivariate analysis.

Reference

- 1. C. Zhang and S.Willenbrock, Phys. Rev. D. **83**. 034006
- 2. G. Durieux, F. Maltoni, and C. Zhang, Phys. Rev. D. **91**. 074017
- 3. Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237
- 4. Measurement of the tt production cross section, the top quark mass and the strong coupling constant using events in the dilepton final state in pp collisions at 13 TeV, CMS-TOP-17-001
- 5. Measurements of tt^{$-$}tt^{$-$} differential cross sections in proton-proton collisions at $\sqrt{s} = 13$ TeV using events containing two leptons, CMS-TOP-17-014
- 6. Measurement of the associated production of a single top quark and a W boson in pp collisions at \sqrt{s} = 13 TeV, 10.1007/JHEP10(2018)117

Results: Comparison with other analysis

Phenomenological work using experimental top measurements

- ➢ "Constraining top quark effective theory in the LHC Run II era"
- ❖ The TopFitter Collaboration
- ❖ Arxiv 1512.03360

DY estimation for ee and $\mu\mu$ channel

❑ DY MET distribution is not well described by the MC

from the events inside the z-peak region

❑ The expected number of events outside the z-veto can be measured from data as:

