

Measurements of heavy-flavour decay leptons in Pb-Pb and Xe-Xe collisions with ALICE at the LHC

Zuman Zhang for the ALICE Collaboration

Institute of Particle Physics, CCNU, Wuhan, China Key Laboratory of Quark & Lepton Physics, MoE, China Laboratoire de Physique de Clermont, CNRS/IN2P3, Clermont-Ferrand, France

Outline

- Physics motivations
- Open heavy-flavour reconstruction in ALICE
- Open heavy-flavour nuclear modification factor
- Model comparisons
- Conclusion and outlook

CLHCP2018

CLHCP2018, 19-22 Dec. 2018, Wuhan, China

Z.M. Zhang

Physics motivations

 $\Delta E_g > \Delta E_{u,d,s}$

PbPb measurement

Charm and beauty quarks: sensitive probes of the medium properties

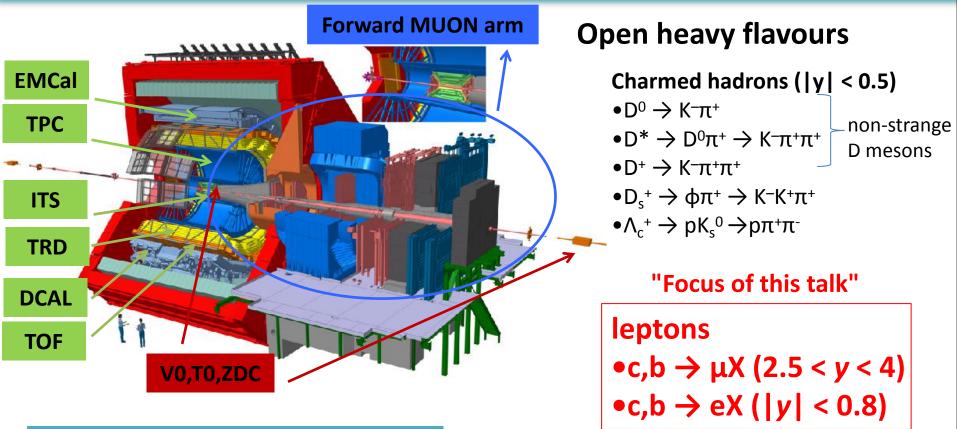
 Open heavy flavours in nucleus-nucleus (AA) collisions
 In-medium parton energy loss: gluon radiation and elastic collisions

- path length and medium density
- color charge (Casimir factor)
- quark mass (dead cone effect)

Is this reflected in: $R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

$$> \Delta E_c > \Delta E_b$$

Observables sensitive to the medium effects


✓ The nuclear modification factor, R_{AA}

$$R_{AA}(p_{T}) = \frac{1}{\langle T_{AA} \rangle} \times \frac{dN_{AA}/dp_{T}}{d\sigma_{pp}/dp_{T}} = \frac{QCD \text{ Medium}}{QCD \text{ Vacuum}}$$

- ✓ If no nuclear effects: $R_{AA} = 1$
- ✓ Effects of the hot and dense medium produced in the collision breakup binary scaling: $R_{AA} \neq 1$

Open heavy-flavour reconstruction in ALICE

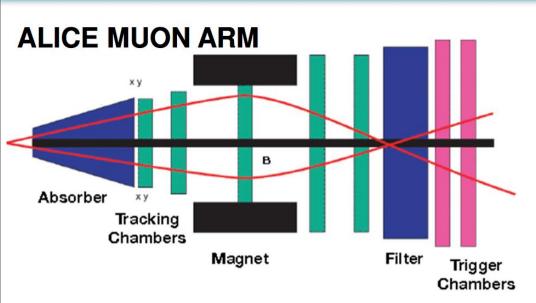
Forward MUON arm (-4 < η < -2.5)

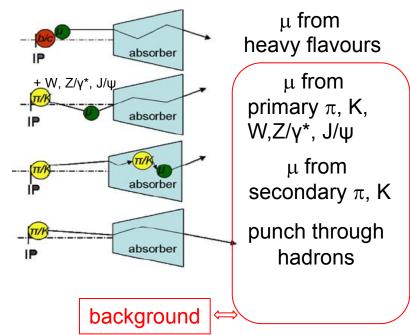
Muon trigger, tracking

Mid-rapidity ($|\eta|$ < 0.9)

- ITS, TPC, TOF, TRD: vertexing, tracking, PID
- EMCal, DCAL: high- p_T electron trigger, PID

Forward detectors: V0, T0, ZDC


• Event trigger, centrality and event plane determination


CLHCP2018

Z.M. Zhang

Muons from heavy-flavour hadron decays

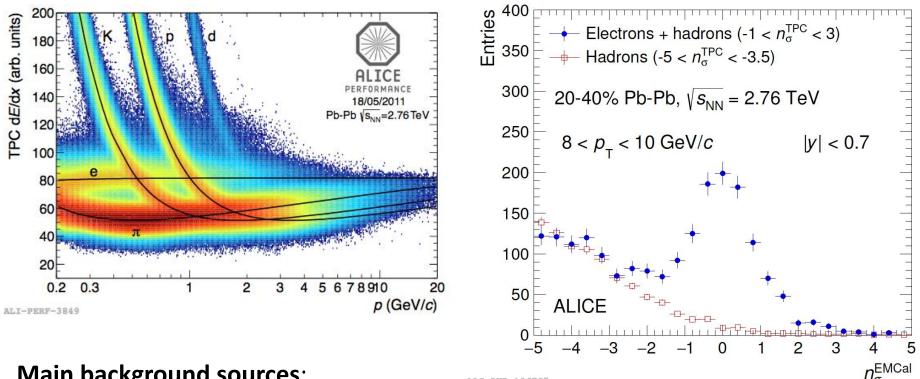
Muon track selection

- Acceptance & geometrical cuts select tracks in the spectrometer acceptance
- *p*_T cut at 3 GeV/c reject μ from secondary π, K
- Muon tracking-trigger matching reject hadrons crossing the front absorber
- p×DCA (Dist. of Closest Approach) in 6σ reject beam-gas interactions & particles produced in the absorber

$\mu^{\pm} \leftarrow b, c \text{ studies}$

Background subtraction

 $\mu \leftarrow \text{primary } \pi, K \text{ (main contribution at low } p_T\text{)}, J/\psi \text{ decays (dominates at 5 GeV/c):}$


data-tuned background cocktail

 $\mu \leftarrow W, Z/\gamma^*$ decays (main contribution at high p_T):

POWHEG simulation

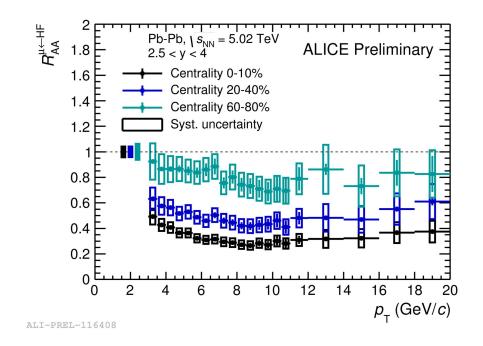
Electrons from heavy-flavour hadron decays

-Low- p_T electrons: PID via TPC dE/dx complemented with TOF and ITS -High- p_{T} electrons: PID using TPC, EMCal

Main background sources:

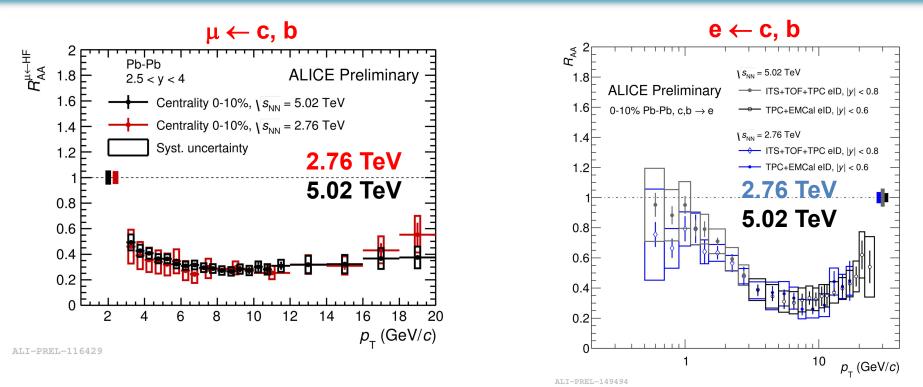
-y conversions $-\pi^0$ and η Dalitz decays

Background subtraction:


ALT-PUB-106797

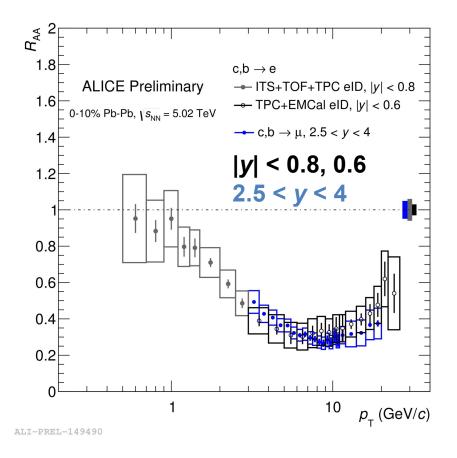
-Measured: photonic-electron tagging method (e⁺e⁻ pairs) -Calculated: data-tuned background cocktail

p_{T} -differential R_{AA} of muons \leftarrow c, b in Pb-Pb collisions



μ **← c, b**

Clear increase of the suppression for more central events: about a factor 3 at *p*_T~8 GeV/*c* in 0-10% Pb-Pb collisions
 High *p*_T, beauty component dominant, indication of beauty energy loss


p_{T} -differential R_{AA} of leptons \leftarrow c, b in Pb-Pb $\underset{\text{ell}}{\bigoplus}$

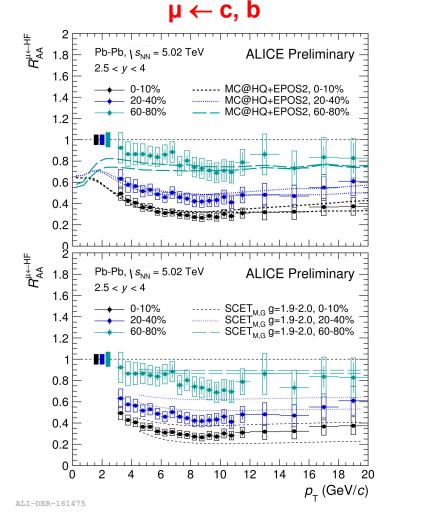
- □ Similar suppression at 5.02 TeV and at 2.76 TeV: described by model ^[1] at two energies → harder spectra and denser medium counterbalance
- □ e ← c, b R_{AA} measurements down to $p_T = 0.5$ GeV/*c*: low- p_T measurements crucial in all systems to test binary scaling of total cc-bar cross section and possible effect of initial-state effects like nuclear PDF (shadowing)
- Improved precision at 5.02 TeV

[1] Djordjevic: Phys. Rev. C92 (2015) 024918

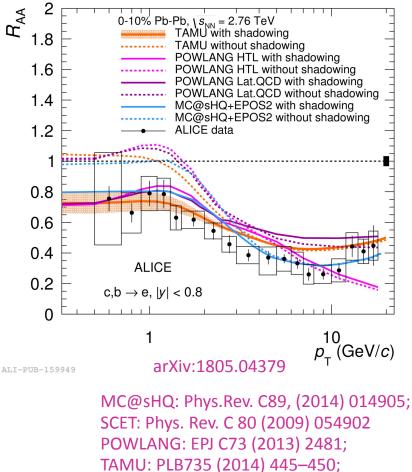
p_{T} -differential R_{AA} of leptons \leftarrow c, b in Pb-Pb \bigcirc collisions: rapidity dependence

Compatible results within uncertainties for heavy-flavour decay electrons (|y| < 0.8, 0.6) and heavy-flavour decay muons (2.5 < y < 4) R_{AA} . Indication that heavy quarks suffer a strong in-medium energy loss in a wide rapidity interval Z.M. Zhang 8 CLHCP2018

p_{T} -differential R_{AA} of leptons \leftarrow c, b in Pb-Pb $\underset{\text{and } p\text{-Pb}}{\longleftarrow}$ collisions



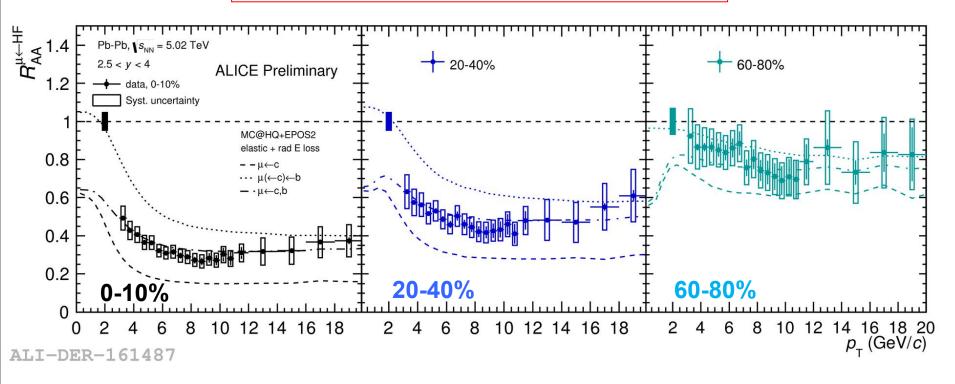
 \square R_{pPb} at mid- and forward rapidity: consistent with unity within uncertainties over the whole measured p_T interval


□ The suppression observed at high p_T in central Pb-Pb collisions results from final-state effects related to parton energy loss

Z.M. Zhang

Model comparison: R_{AA} in Pb-Pb collisions (1/2)

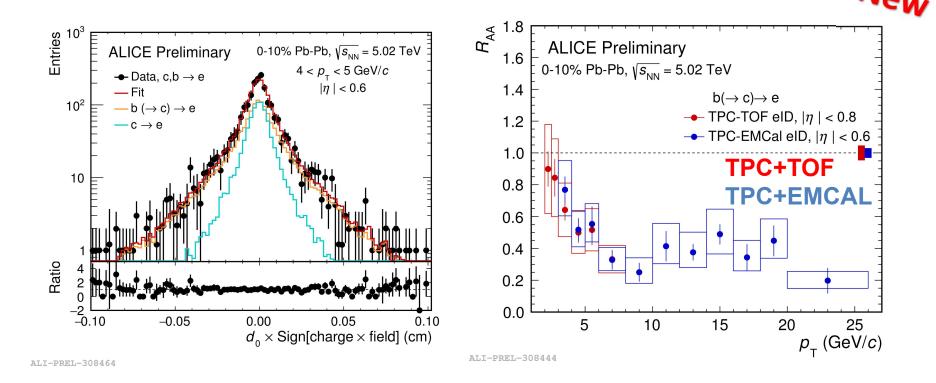
e ← c, b



D R_{AA} measurements at $\sqrt{s_{NN}}$ = 5.02 TeV provide new constraints on energy loss models

Data are better described by models when nuclear PDF (EPS09) are used 2.M. Zhang 10 CLHCP2018

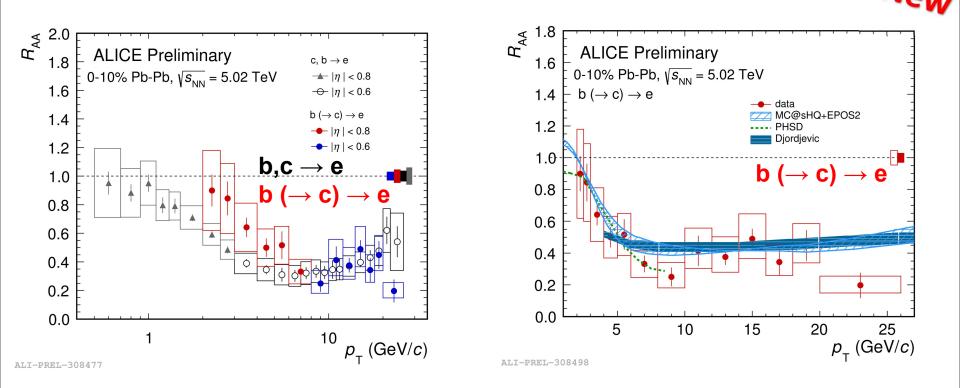
Model comparison: R_{AA} in Pb-Pb collisions (2/2)


□ Data at high p_T very close to µ ← b MC@sHQ+EPOS2 predictions in different centrality classes

■ MC@sHQ+EPOS2, which reproduces well $\mu \leftarrow c, b R_{AA}$, expects $\mu \leftarrow b R_{AA} > \sim 2 \times \mu \leftarrow c R_{AA}$

MC@sHQ: Phys.Rev. C89, (2014) 014905

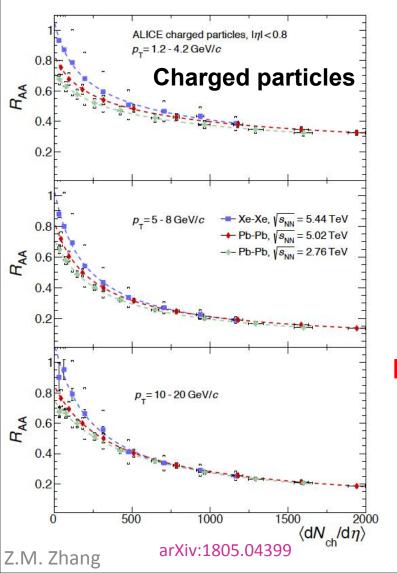
R_{AA} of $e^{\pm} \leftarrow b$ in Pb-Pb collisions (1/2)

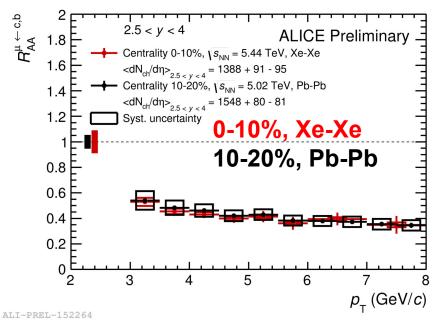


□ Analysis of e[±] ← b based on the electron impact parameter distribution. Beauty-decay electron yield measured up to 26 GeV/c using EMCAL-triggered data

□ Consistent result with TPC-TOF based analysis and EMCAL-TPC based analysis in overlapping p_T interval

R_{AA} of $e^{\pm} \leftarrow b$ in Pb-Pb collisions (2/2)

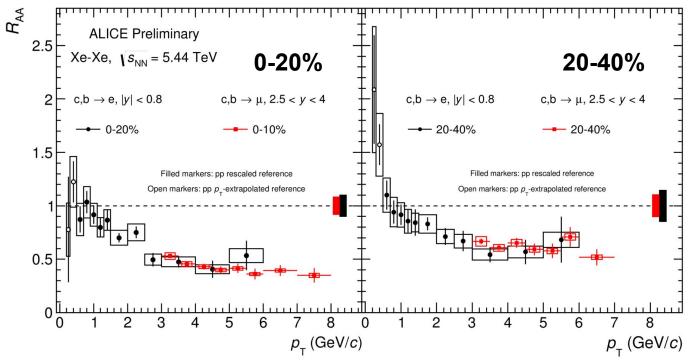

 □ Hint of a smaller suppression for beauty-decay electron for p_T < 6 GeV/c
 □ Data are reproduced by models within uncertainties, implementing massdependent energy loss


MC@sHQ: Phys.Rev. C89 no. 1, (2014) 014905 PHSD: Phys. Rev. C93 no. 3, (2016) 034906 Djordjevic: Phys. Rev. C92 (2015) 024918

CLHCP2018

p_{T} -differential R_{AA} of leptons \leftarrow c, b in Xe-Xe collisions: geometry and path-length dependence

Charged particles: similar R_{AA} is observed in Xe-Xe and Pb-Pb at similar $<dN/d\eta>$



- Similar heavy-flavour hadron decay muon
 *R*_{AA} observed in 0-10% Xe-Xe and 10-20%
 Pb-Pb collisions at similar <d*N*/dη>
 - Possible interplay of geometry and path-length dependence
 M. Djordjevic et al, arXiv: 1805.04030
 14

p_{T} -differential R_{AA} of leptons \leftarrow c, b in Xe-Xe collisions: rapidity dependence

Heavy-flavour decay electron R_{AA} measured down to $p_T = 0.2 \text{ GeV}/c$ thanks to the low B field used during the Xe-Xe data taking!

ALI-PREL-148699

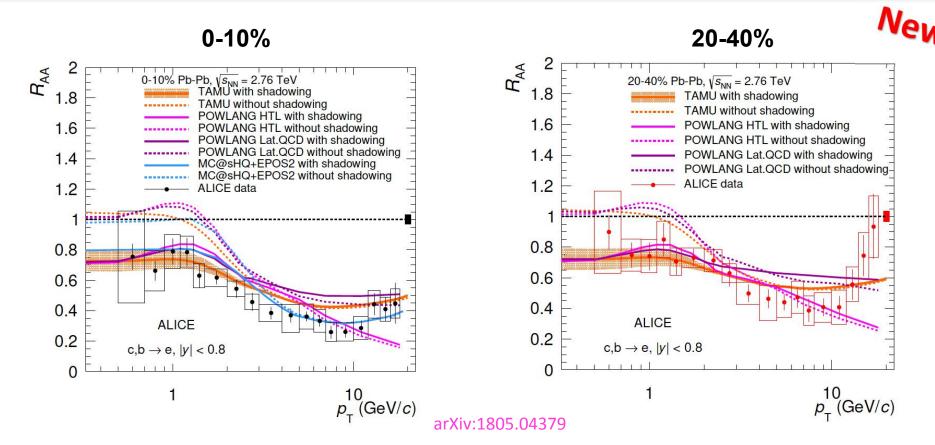
□ Compatible results within uncertainties for heavy-flavour decay electrons (|y| < 0.8) and heavy-flavour decay muons $(2.5 < y < 4) R_{AA}$ in central and semi-central collisions

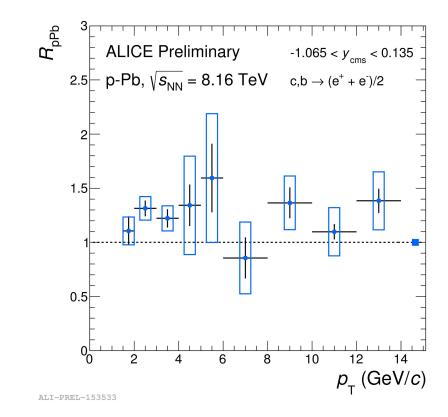
Conclusion

Conclusion

- \square R_{AA} of open heavy-flavour decay leptons in heavy-ion collisions
 - ✓ Strong suppression in 0-10% centrality class. The measured suppression is due to final-state effects (R_{pPb} ~ 1)
 - ✓ Similar R_{AA} at mid and forward rapidity
 - ✓ Similar heavy-flavour hadron decay muon R_{AA} observed in 0-10% Xe-Xe and 10-20% Pb-Pb collisions

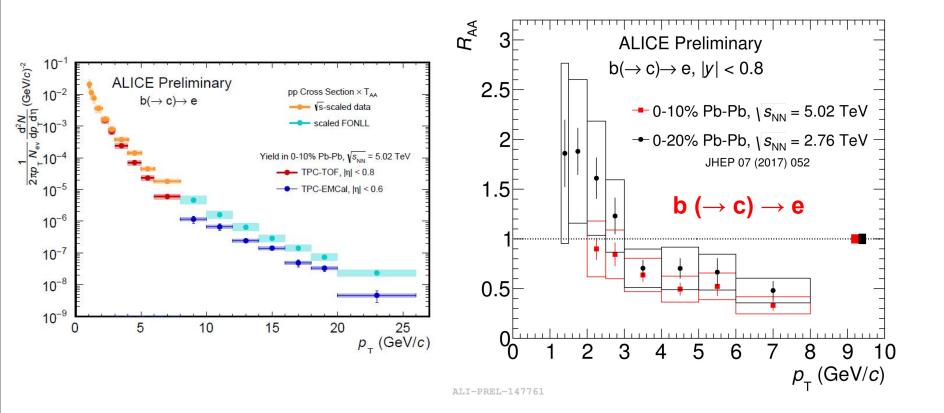
More differential measurements will come soon with new data from the Pb-Pb run in end of 2018


Thank you for your attention

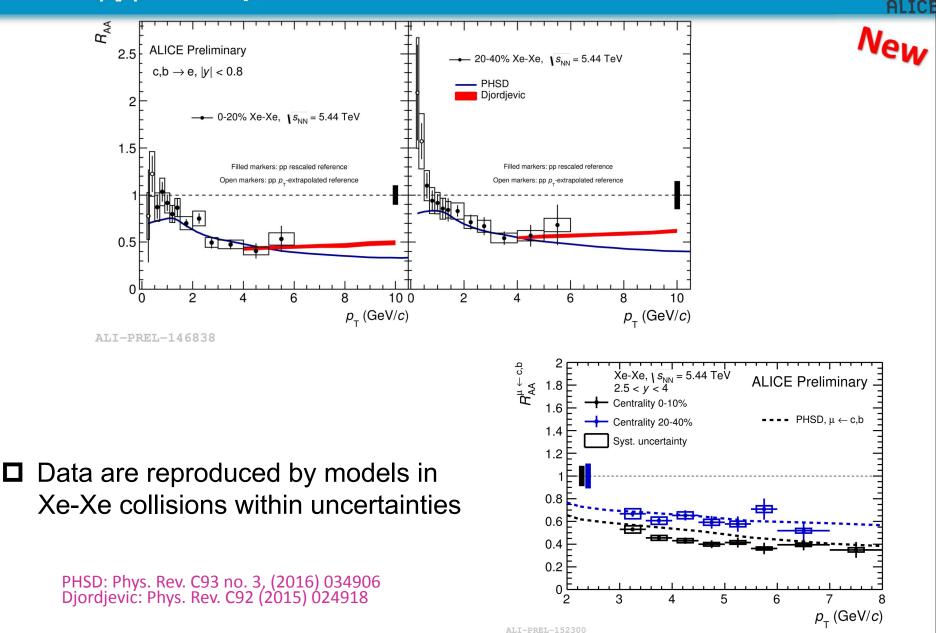

Model comparison: R_{AA} in Pb-Pb collisons (2/2)

□ Data are better described when the nuclear PDFs (EPS09) are included in the model calculation (TAMU, POWLANG and MC@sHQ+EPOS2) in both centrality intervals □ Suppression at intermediate/high p_T is better described by models that include both radiative and collisional energy loss processes

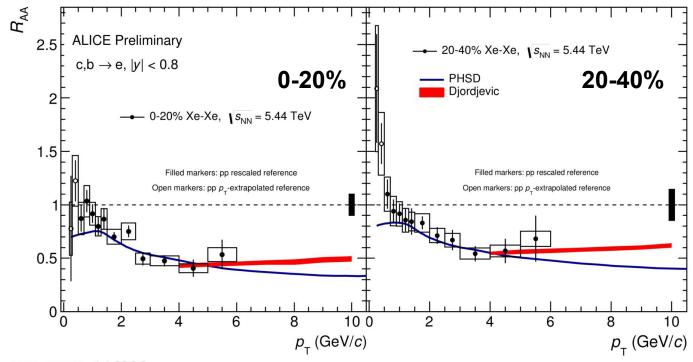
p_{T} -differential R_{AA} of leptons \leftarrow c, b in p-Pb of collisions


e ← c, b

 \square R_{pPb} at mid- and forward rapidity: consistent with unity within uncertainties over the whole p_T range


R_{AA} of $e^{\pm} \leftarrow b$ in Pb-Pb collisions

R_{AA} of leptons \leftarrow c, b in Xe-Xe collisions



Z.M. Zhang

CLHCP2018

Model comparison: R_{AA} in Xe-Xe collisions

ALI-PREL-146838

Data are reproduced by models in Xe-Xe collisions within uncertainties

PHSD: Phys. Rev. C93 no. 3, (2016) 034906 Djordjevic: Phys. Rev. C92 (2015) 024918

T_{AA} values in Xe-Xe and Pb-Pb collisions

Xe-Xe

Cent (%)	Npart	RMS	Sys	Ncoll	RMS	Sys	TAA	RMS	Sys
<mark>0-10%</mark>	221.2	19	2.2	843.1	1.4e+02	70	12.33	2	1
10-20 %	164.8	18	2.8	510.6	86	51	7.465	1.3	0.74
20-30 %	<mark>118.4</mark>	14	3.8	302.8	58	40	4.426	0.85	0.59
30-40 %	82.21	11	3.9	171.3	38	27	2.505	0.56	0.4
40-50 %	54.56	8.8	3.6	91.81	24	16	1.342	0.35	0.24
50-60 %	34.06	6.5	3	46.04	14	8.8	0.6731	0.2	0.13
<mark>60-70 %</mark>	19.72	4.7	2.1	21.65	7.6	4.1	0.3166	0.11	0.061
70-80 %	10.5	3.1	1.1	9.515	3.9	1.6	0.1391	0.056	0.024
80-90 %	5.127	1.9	0.46	<mark>3.838</mark>	1.9	0.5	0.05611	0.028	0.0074
90-100 %	2.488	0.8	0.12	1.449	0.73	0.1	0.02118	0.011	0.0015

Cent	bmin [fm]	bmax [fm]	Npart	RMS	Sys	Ncoll	RMS	Sys	TAA	RMS	Sys
00 - 10 %	0.00	4.96	359	<mark>31.2</mark>	3.0	1636	246	170	23.4	3.51	0.78
10 - 20 %	4.96	7.01	263	27.1	3.6	1001	154	97	14.3	2.2	0.46
20 - 30 %	7.01	8.59	188	22.5	3.0	601	106	54	8.59	1.52	0.27
30 - 40 %	8.59	9.92	131	19.1	2.3	344	74.7	29	4.92	1.07	0.16
40 - 50 %	9.92	11.1	86.3	16.3	1.7	183	50.8	14	2.61	0.726	0.1
50 - 60 %	11.1	12.1	53.6	13.6	1.2	89.8	32.4	6	1.28	0. <mark>4</mark> 63	0.063
60 - 70 %	12.1	13.1	30.4	10.8	0.76	39.8	19.1	2.4	0.569	0.273	0.032
70 - 80 %	13.1	14.0	15.6	7.83	0.45	16.2	10.5	0.92	0.232	0.15	0.015
80 - 90 %	14.0	15.0	7.59	4.89	0.19	6.57	5.27	0.3	0.0923	0.0753	0.007
90 - 100 %	15.0	19.6	3.77	2.5	0.079	2.66	2.41	0.088	0.0378	0.0344	0.0033

Pb-Pb