Principal Component Analysis: Why do we use fourier transformation to analyze flow?

Ziming Liu

Peking University
Collaborators: Huichao Song, Wenbin Zhao

December 16, 2018

Overview

(1) Motivation of the Question
(2) Introduction to PCA
(3) PCA in Sciences
(4) Model
(5) Results(Paper in Preparation)
(6) Conclusions

Simple Review for Flow

Integrated flow is decomposed under Fourier bases:

$$
\begin{equation*}
\frac{\mathrm{d} N}{\mathrm{~d} \varphi}=\frac{1}{2 \pi} \sum_{-\infty}^{\infty} \vec{V}_{n} e^{-i n \varphi}=\frac{1}{2 \pi}\left(1+2 \sum_{n=1}^{\infty} v_{n} e^{-i n\left(\varphi-\Psi_{n}\right)}\right) \tag{1}
\end{equation*}
$$

- $\vec{V}_{n}=v_{n} e^{i n \Psi_{n}}: n$-th order flow-vector
- $v_{n}=\left\langle\cos n\left(\varphi-\Psi_{n}\right)\right\rangle$: n-th flow harmonics
- Ψ_{n} : corresponding event plane angle

Q: How to find good bases to decompose particle distribution?

Overview

(1) Motivation of the Question

(2) Introduction to PCA
(3) PCA in Sciences
(4) Model
(5) Results(Paper in Preparation)
(6) Conclusions

PCA belongs to Machine Learning

One minute for PCA

PCA transform a set of correlated variables to uncorrelated ones via an orthogonal transformation:

$$
X=U \Sigma Z
$$

U, Z : orthogonal matrices; Σ : Diagonal matrix.
X : Original variables; Z : transformed variables.

Eigenvectors z: correlations between features Singular values σ : importance of eigenvectors

Motivation : Face detection with PCA

Figure: Dataset:different faces

Top eigenvectors: $u_{1}, \ldots u_{k}$

Figure: Eigenfaces

Eigenfaces show interesting correlations:

- More beard/mustache \rightarrow man \rightarrow tanned face
- Round face \rightarrow baby \rightarrow less wrinkle
- Each face is decomposed into superposition of eigenfaces.

- Each face can be expressed by number of faces far less than pixels of the original image. Correlations play a huge role!

Overview

(1) Motivation of the Question

(2) Introduction to PCA
(3) PCA in Sciences
(4) Model
(5) Results(Paper in Preparation)
(6) Conclusions

Classical Mechanics and Atmospheric Sciences

- eigenfrequencies in particle motion

H. Y. Chen, Raphal Ligeois, John R. de Bruyn, and Andrea
- Multi-resolution PCA to discover El Nino.

Soddu Phys. Rev. E 91, 042308 Published 15 April 2015

Condensed matter physics

Machine learning helps discover

- Correlations between spin configurations
- Phase transition

$$
\mathcal{H}=J \sum_{(i j)} \cos \left(\theta_{i}-\theta_{j}\right)
$$

C Wang, H Zhai - Physical Review B,96(2017),14,144432

Flow in Heavy Ion Collisions

- subleading modes of factorization breaking

Aleksas Mazeliauskas, Derek Teaney Phys.Rev.C93 (2016) no.2, 024913

- Nonlinear response coefficients

Piotr Bozek, Phys.Rev. C97 (2018) no.3, 034905

- Best linear descriptor

$$
\zeta_{n, p r e d}^{(a)}=\varepsilon_{n, n}+c_{1} \varepsilon_{n, n+2}
$$

Rajeev S. Bhalerao, Jean-Yves Ollitrault, Subrata Pal, Derek
Teaney Phys.Rev.Lett. 114 (2015) no.15, 152301

- Experimental data

CMS collaboration, Phys.Rev. C96 (2017) no.6, 064902

Overview

(1) Motivation of the Question

(2) Introduction to PCA
(3) PCA in Sciences
(4) Model
(5) Results(Paper in Preparation)
(6) Conclusions

Previous work and our approach

Previous work ${ }^{1}$ utilizes Fourier Transformation in the ϕ direction:

$$
\frac{d N}{d p}=\sum_{n=-\infty}^{+\infty} V_{n}(p) e^{i n \phi} \quad p=\left(p_{t}, \eta\right)
$$

PCA decomposes $V_{n}(p)$ into eigenmodes:

$$
V_{n}(p)=\sum_{\alpha=1}^{k} \xi^{(\alpha)} V_{n}^{(\alpha)}(p)
$$

However, we apply PCA directly to $d N / d \phi$ data without FT:

$$
\frac{d N}{d \phi}=\sum_{\alpha=1}^{k} \xi^{(\alpha)}\left(\frac{d N}{d \phi}\right)^{(\alpha)}
$$

Simulations

$\mathrm{Pb}+\mathrm{Pb}$ collisions at 2.76 A TeV

No hadron rescattering or resonance decays to simplify problem settings.

Our approach

PCA for flow analysis

Data sets: $\frac{d N}{d \varphi}$

top eigenvectors: $\sigma_{1}, \sigma_{2}, \sigma_{3} \ldots \ldots$
mean μ

With PCA, each flow distribution is decomposed into superposition of eigenmodes.

Overview

(1) Motivation of the Question
(2) Introduction to PCA
(3) PCA in Sciences
(4) Model
(5) Results(Paper in Preparation)
(6) Conclusions

Singular values σ

Singular values σ pairwise matched

Eigenvectors z

Eigenvectors look similar to $\sin (n \phi)$ and $\cos (n \phi)$.

Eigenvectors z

Eigenvectors look similar to $\sin (n \phi)$ and $\cos (n \phi)$.

Machines automatically discover fourier transformation for flow!

Defining new flow observables v_{n}^{\prime}

$z_{k}: k$-th (normalized) eigenvector
x_{k} : amplitude of z_{k}.

$$
\frac{d N}{d \phi}=\mu+\sum_{i=1}^{k} x_{k} z_{k}
$$

n	v_{n}^{\prime}	$\overline{v_{n}^{\prime}} \times 10^{2}$	$\overline{v_{n}} \times 10^{2}$
2	$\sqrt{\frac{m}{2}} \sqrt{x_{1}^{2}+x_{2}^{2}}$	6.03	6.08
3	$\sqrt{\frac{m}{2}} \sqrt{x_{3}^{2}+x_{4}^{2}}$	2.57	2.53
4	$\sqrt{\frac{m}{2}} \sqrt{x_{5}^{2}+x_{6}^{2}}$	1.21	1.25
5	$\sqrt{\frac{m}{2}} \sqrt{x_{9}^{2}+x_{10}^{2}}$	0.57	0.66
6	$\sqrt{\frac{m}{2}} \sqrt{x_{11}^{2}+x_{12}^{2}}$	0.26	0.37

Compare v_{n} and v_{n}^{\prime}

- v_{2}^{\prime} fits really well with v_{2}, and v_{3}^{\prime} fits really well with v_{3}.
- v_{4}^{\prime} is deviated from v_{4}.

FC of eigenvectors

- z_{1} / z_{2} contain $\sin (4 \phi)$ and $\cos (4 \phi)$ bases as well.

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

Eigenmodes z_{i}

$\mathrm{SC}\left(v_{m}, v_{n}\right)$

$$
\mathrm{SC}\left(v_{m}, v_{n}\right)=\left\langle v_{m}^{2} v_{n}^{2}\right\rangle-\left\langle v_{n}^{2}\right\rangle\left\langle v_{m}^{2}\right\rangle
$$

Pearson Coefficient: $r\left(v_{m}, \varepsilon_{n}\right)$

Closer look : centrality $10 \%-20 \%$ data

PCA correlators has a more diagonal pattern. Fourier:

PCA:

Overview

(1) Motivation of the Question

(2) Introduction to PCA

(3) PCA in Sciences
(4) Model
(5) Results(Paper in Preparation)
(6) Conclusions

Conclusions

- PCA helps visualize data.
- PCA automatically discovers flow observables.
- PCA provides a new perspective that relates better to initial profile.

Prospectives

- PCA helps reveal structure of data with its strong power of visualization.
- PCA aids in designing observables in complicated systems.
- Carefully applying PCA to real experimental data in relativistic heavy-ion experiments.

Thanks!

